Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexmpl2.v |
⊢ 𝑉 = ( 0 ... 5 ) |
2 |
|
usgrexmpl2.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } ”〉 |
3 |
|
usgrexmpl2.g |
⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 |
4 |
|
usgrexmpl1.k |
⊢ 𝐾 = 〈“ { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } ”〉 |
5 |
|
usgrexmpl1.h |
⊢ 𝐻 = 〈 𝑉 , 𝐾 〉 |
6 |
1 2 3
|
usgrexmpl2 |
⊢ 𝐺 ∈ USGraph |
7 |
|
usgruhgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) |
8 |
6 7
|
ax-mp |
⊢ 𝐺 ∈ UHGraph |
9 |
|
gricsym |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺 ) ) |
10 |
8 9
|
ax-mp |
⊢ ( 𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺 ) |
11 |
1 4 5
|
usgrexmpl1tri |
⊢ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) |
12 |
|
brgric |
⊢ ( 𝐻 ≃𝑔𝑟 𝐺 ↔ ( 𝐻 GraphIso 𝐺 ) ≠ ∅ ) |
13 |
|
n0 |
⊢ ( ( 𝐻 GraphIso 𝐺 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ) |
14 |
12 13
|
bitri |
⊢ ( 𝐻 ≃𝑔𝑟 𝐺 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ) |
15 |
1 2 3
|
usgrexmpl2trifr |
⊢ ¬ ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) |
16 |
1 4 5
|
usgrexmpl1 |
⊢ 𝐻 ∈ USGraph |
17 |
|
usgruhgr |
⊢ ( 𝐻 ∈ USGraph → 𝐻 ∈ UHGraph ) |
18 |
16 17
|
ax-mp |
⊢ 𝐻 ∈ UHGraph |
19 |
18
|
a1i |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → 𝐻 ∈ UHGraph ) |
20 |
8
|
a1i |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → 𝐺 ∈ UHGraph ) |
21 |
|
simpl |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ) |
22 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) |
23 |
19 20 21 22
|
grimgrtri |
⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) |
24 |
23
|
ex |
⊢ ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
25 |
|
alnex |
⊢ ( ∀ 𝑡 ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ¬ ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ) |
26 |
|
vex |
⊢ 𝑓 ∈ V |
27 |
26
|
imaex |
⊢ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V |
28 |
|
id |
⊢ ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V → ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V ) |
29 |
|
eleq1 |
⊢ ( 𝑡 = ( 𝑓 “ { 0 , 1 , 2 } ) → ( 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
30 |
29
|
notbid |
⊢ ( 𝑡 = ( 𝑓 “ { 0 , 1 , 2 } ) → ( ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ¬ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V ∧ 𝑡 = ( 𝑓 “ { 0 , 1 , 2 } ) ) → ( ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ¬ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
32 |
28 31
|
spcdv |
⊢ ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V → ( ∀ 𝑡 ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ¬ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
33 |
27 32
|
ax-mp |
⊢ ( ∀ 𝑡 ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ¬ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) |
34 |
33
|
pm2.21d |
⊢ ( ∀ 𝑡 ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
35 |
25 34
|
sylbir |
⊢ ( ¬ ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
36 |
15 24 35
|
mpsylsyld |
⊢ ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
37 |
36
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
38 |
14 37
|
sylbi |
⊢ ( 𝐻 ≃𝑔𝑟 𝐺 → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
39 |
10 11 38
|
mpisyl |
⊢ ( 𝐺 ≃𝑔𝑟 𝐻 → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) |
40 |
39
|
pm2.01i |
⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 |