Metamath Proof Explorer


Theorem usgrexmpl2nb5

Description: The neighborhood of the sixth vertex of graph G . (Contributed by AV, 10-Aug-2025)

Ref Expression
Hypotheses usgrexmpl2.v V = 0 5
usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
usgrexmpl2.g G = V E
Assertion usgrexmpl2nb5 G NeighbVtx 5 = 0 4

Proof

Step Hyp Ref Expression
1 usgrexmpl2.v V = 0 5
2 usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
3 usgrexmpl2.g G = V E
4 5re 5
5 4 elexi 5 V
6 5 tpid3 5 3 4 5
7 6 olci 5 0 1 2 5 3 4 5
8 elun 5 0 1 2 3 4 5 5 0 1 2 5 3 4 5
9 7 8 mpbir 5 0 1 2 3 4 5
10 1 2 3 usgrexmpl2nblem 5 0 1 2 3 4 5 G NeighbVtx 5 = n 0 1 2 3 4 5 | 5 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
11 9 10 ax-mp G NeighbVtx 5 = n 0 1 2 3 4 5 | 5 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
12 c0ex 0 V
13 12 tpid1 0 0 1 2
14 13 orci 0 0 1 2 0 3 4 5
15 elun 0 0 1 2 3 4 5 0 0 1 2 0 3 4 5
16 14 15 mpbir 0 0 1 2 3 4 5
17 4re 4
18 17 elexi 4 V
19 18 tpid2 4 3 4 5
20 19 olci 4 0 1 2 4 3 4 5
21 elun 4 0 1 2 3 4 5 4 0 1 2 4 3 4 5
22 20 21 mpbir 4 0 1 2 3 4 5
23 prssi 0 0 1 2 3 4 5 4 0 1 2 3 4 5 0 4 0 1 2 3 4 5
24 vex n V
25 4 24 pm3.2i 5 n V
26 3re 3
27 26 17 pm3.2i 3 4
28 25 27 pm3.2i 5 n V 3 4
29 3lt5 3 < 5
30 26 29 gtneii 5 3
31 4lt5 4 < 5
32 17 31 gtneii 5 4
33 30 32 pm3.2i 5 3 5 4
34 33 orci 5 3 5 4 n 3 n 4
35 prneimg 5 n V 3 4 5 3 5 4 n 3 n 4 5 n 3 4
36 28 34 35 mp2 5 n 3 4
37 36 neii ¬ 5 n = 3 4
38 37 biorfi 5 n = 4 5 5 n = 0 5 5 n = 3 4 5 n = 4 5 5 n = 0 5
39 orcom n = 0 n = 4 n = 4 n = 0
40 prcom 4 5 = 5 4
41 40 eqeq2i 5 n = 4 5 5 n = 5 4
42 24 a1i 4 n V
43 id 4 4
44 42 43 preq2b 4 5 n = 5 4 n = 4
45 17 44 ax-mp 5 n = 5 4 n = 4
46 41 45 bitr2i n = 4 5 n = 4 5
47 prcom 0 5 = 5 0
48 47 eqeq2i 5 n = 0 5 5 n = 5 0
49 24 a1i 0 V n V
50 id 0 V 0 V
51 49 50 preq2b 0 V 5 n = 5 0 n = 0
52 12 51 ax-mp 5 n = 5 0 n = 0
53 48 52 bitr2i n = 0 5 n = 0 5
54 46 53 orbi12i n = 4 n = 0 5 n = 4 5 5 n = 0 5
55 39 54 bitri n = 0 n = 4 5 n = 4 5 5 n = 0 5
56 3orass 5 n = 3 4 5 n = 4 5 5 n = 0 5 5 n = 3 4 5 n = 4 5 5 n = 0 5
57 38 55 56 3bitr4i n = 0 n = 4 5 n = 3 4 5 n = 4 5 5 n = 0 5
58 0re 0
59 1re 1
60 58 59 pm3.2i 0 1
61 25 60 pm3.2i 5 n V 0 1
62 5pos 0 < 5
63 58 62 gtneii 5 0
64 1lt5 1 < 5
65 59 64 gtneii 5 1
66 63 65 pm3.2i 5 0 5 1
67 66 orci 5 0 5 1 n 0 n 1
68 prneimg 5 n V 0 1 5 0 5 1 n 0 n 1 5 n 0 1
69 61 67 68 mp2 5 n 0 1
70 69 neii ¬ 5 n = 0 1
71 2re 2
72 59 71 pm3.2i 1 2
73 25 72 pm3.2i 5 n V 1 2
74 2lt5 2 < 5
75 71 74 gtneii 5 2
76 65 75 pm3.2i 5 1 5 2
77 76 orci 5 1 5 2 n 1 n 2
78 prneimg 5 n V 1 2 5 1 5 2 n 1 n 2 5 n 1 2
79 73 77 78 mp2 5 n 1 2
80 79 neii ¬ 5 n = 1 2
81 71 26 pm3.2i 2 3
82 25 81 pm3.2i 5 n V 2 3
83 75 30 pm3.2i 5 2 5 3
84 83 orci 5 2 5 3 n 2 n 3
85 prneimg 5 n V 2 3 5 2 5 3 n 2 n 3 5 n 2 3
86 82 84 85 mp2 5 n 2 3
87 86 neii ¬ 5 n = 2 3
88 70 80 87 3pm3.2ni ¬ 5 n = 0 1 5 n = 1 2 5 n = 2 3
89 88 biorfi 5 n = 3 4 5 n = 4 5 5 n = 0 5 5 n = 0 1 5 n = 1 2 5 n = 2 3 5 n = 3 4 5 n = 4 5 5 n = 0 5
90 57 89 bitri n = 0 n = 4 5 n = 0 1 5 n = 1 2 5 n = 2 3 5 n = 3 4 5 n = 4 5 5 n = 0 5
91 58 26 pm3.2i 0 3
92 25 91 pm3.2i 5 n V 0 3
93 63 30 pm3.2i 5 0 5 3
94 93 orci 5 0 5 3 n 0 n 3
95 prneimg 5 n V 0 3 5 0 5 3 n 0 n 3 5 n 0 3
96 92 94 95 mp2 5 n 0 3
97 96 neii ¬ 5 n = 0 3
98 97 biorfi 5 n = 0 1 5 n = 1 2 5 n = 2 3 5 n = 3 4 5 n = 4 5 5 n = 0 5 5 n = 0 3 5 n = 0 1 5 n = 1 2 5 n = 2 3 5 n = 3 4 5 n = 4 5 5 n = 0 5
99 90 98 bitri n = 0 n = 4 5 n = 0 3 5 n = 0 1 5 n = 1 2 5 n = 2 3 5 n = 3 4 5 n = 4 5 5 n = 0 5
100 24 elpr n 0 4 n = 0 n = 4
101 prex 5 n V
102 el7g 5 n V 5 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5 5 n = 0 3 5 n = 0 1 5 n = 1 2 5 n = 2 3 5 n = 3 4 5 n = 4 5 5 n = 0 5
103 101 102 ax-mp 5 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5 5 n = 0 3 5 n = 0 1 5 n = 1 2 5 n = 2 3 5 n = 3 4 5 n = 4 5 5 n = 0 5
104 99 100 103 3bitr4i n 0 4 5 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
105 104 a1i 0 0 1 2 3 4 5 4 0 1 2 3 4 5 n 0 1 2 3 4 5 n 0 4 5 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
106 23 105 eqrrabd 0 0 1 2 3 4 5 4 0 1 2 3 4 5 0 4 = n 0 1 2 3 4 5 | 5 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
107 106 eqcomd 0 0 1 2 3 4 5 4 0 1 2 3 4 5 n 0 1 2 3 4 5 | 5 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5 = 0 4
108 16 22 107 mp2an n 0 1 2 3 4 5 | 5 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5 = 0 4
109 11 108 eqtri G NeighbVtx 5 = 0 4