Metamath Proof Explorer


Theorem uspgredg2v

Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 6-Dec-2020)

Ref Expression
Hypotheses uspgredg2v.v V=VtxG
uspgredg2v.e E=EdgG
uspgredg2v.a A=eE|Ne
uspgredg2v.f F=yAιzV|y=Nz
Assertion uspgredg2v GUSHGraphNVF:A1-1V

Proof

Step Hyp Ref Expression
1 uspgredg2v.v V=VtxG
2 uspgredg2v.e E=EdgG
3 uspgredg2v.a A=eE|Ne
4 uspgredg2v.f F=yAιzV|y=Nz
5 1 2 3 uspgredg2vlem GUSHGraphyAιzV|y=NzV
6 5 ralrimiva GUSHGraphyAιzV|y=NzV
7 6 adantr GUSHGraphNVyAιzV|y=NzV
8 preq2 z=nNz=Nn
9 8 eqeq2d z=ny=Nzy=Nn
10 9 cbvriotavw ιzV|y=Nz=ιnV|y=Nn
11 8 eqeq2d z=nx=Nzx=Nn
12 11 cbvriotavw ιzV|x=Nz=ιnV|x=Nn
13 simpl GUSHGraphNVGUSHGraph
14 eleq2w e=yNeNy
15 14 3 elrab2 yAyENy
16 2 eleq2i yEyEdgG
17 16 biimpi yEyEdgG
18 17 anim1i yENyyEdgGNy
19 15 18 sylbi yAyEdgGNy
20 19 adantr yAxAyEdgGNy
21 13 20 anim12i GUSHGraphNVyAxAGUSHGraphyEdgGNy
22 3anass GUSHGraphyEdgGNyGUSHGraphyEdgGNy
23 21 22 sylibr GUSHGraphNVyAxAGUSHGraphyEdgGNy
24 uspgredg2vtxeu GUSHGraphyEdgGNy∃!nVtxGy=Nn
25 reueq1 V=VtxG∃!nVy=Nn∃!nVtxGy=Nn
26 1 25 ax-mp ∃!nVy=Nn∃!nVtxGy=Nn
27 24 26 sylibr GUSHGraphyEdgGNy∃!nVy=Nn
28 23 27 syl GUSHGraphNVyAxA∃!nVy=Nn
29 eleq2w e=xNeNx
30 29 3 elrab2 xAxENx
31 2 eleq2i xExEdgG
32 31 biimpi xExEdgG
33 32 anim1i xENxxEdgGNx
34 30 33 sylbi xAxEdgGNx
35 34 adantl yAxAxEdgGNx
36 13 35 anim12i GUSHGraphNVyAxAGUSHGraphxEdgGNx
37 3anass GUSHGraphxEdgGNxGUSHGraphxEdgGNx
38 36 37 sylibr GUSHGraphNVyAxAGUSHGraphxEdgGNx
39 uspgredg2vtxeu GUSHGraphxEdgGNx∃!nVtxGx=Nn
40 reueq1 V=VtxG∃!nVx=Nn∃!nVtxGx=Nn
41 1 40 ax-mp ∃!nVx=Nn∃!nVtxGx=Nn
42 39 41 sylibr GUSHGraphxEdgGNx∃!nVx=Nn
43 38 42 syl GUSHGraphNVyAxA∃!nVx=Nn
44 10 12 28 43 riotaeqimp GUSHGraphNVyAxAιzV|y=Nz=ιzV|x=Nzy=x
45 44 ex GUSHGraphNVyAxAιzV|y=Nz=ιzV|x=Nzy=x
46 45 ralrimivva GUSHGraphNVyAxAιzV|y=Nz=ιzV|x=Nzy=x
47 eqeq1 y=xy=Nzx=Nz
48 47 riotabidv y=xιzV|y=Nz=ιzV|x=Nz
49 4 48 f1mpt F:A1-1VyAιzV|y=NzVyAxAιzV|y=Nz=ιzV|x=Nzy=x
50 7 46 49 sylanbrc GUSHGraphNVF:A1-1V