Metamath Proof Explorer


Theorem uvcendim

Description: In a nonzero ring, the number of unit vectors of a free module corresponds to the dimension of the free module. (Contributed by AV, 10-Mar-2019)

Ref Expression
Hypothesis uvcf1o.u U=RunitVecI
Assertion uvcendim RNzRingIWIranU

Proof

Step Hyp Ref Expression
1 uvcf1o.u U=RunitVecI
2 1 ovexi UV
3 2 a1i RNzRingIWUV
4 1 uvcf1o RNzRingIWU:I1-1 ontoranU
5 f1oeq1 U=uU:I1-1 ontoranUu:I1-1 ontoranU
6 5 eqcoms u=UU:I1-1 ontoranUu:I1-1 ontoranU
7 6 biimpd u=UU:I1-1 ontoranUu:I1-1 ontoranU
8 7 a1i RNzRingIWu=UU:I1-1 ontoranUu:I1-1 ontoranU
9 4 8 syl7 RNzRingIWu=URNzRingIWu:I1-1 ontoranU
10 9 imp RNzRingIWu=URNzRingIWu:I1-1 ontoranU
11 3 10 spcimedv RNzRingIWRNzRingIWuu:I1-1 ontoranU
12 11 pm2.43i RNzRingIWuu:I1-1 ontoranU
13 bren IranUuu:I1-1 ontoranU
14 12 13 sylibr RNzRingIWIranU