Metamath Proof Explorer


Theorem uvcendim

Description: In a nonzero ring, the number of unit vectors of a free module corresponds to the dimension of the free module. (Contributed by AV, 10-Mar-2019)

Ref Expression
Hypothesis uvcf1o.u U = R unitVec I
Assertion uvcendim R NzRing I W I ran U

Proof

Step Hyp Ref Expression
1 uvcf1o.u U = R unitVec I
2 1 ovexi U V
3 2 a1i R NzRing I W U V
4 1 uvcf1o R NzRing I W U : I 1-1 onto ran U
5 f1oeq1 U = u U : I 1-1 onto ran U u : I 1-1 onto ran U
6 5 eqcoms u = U U : I 1-1 onto ran U u : I 1-1 onto ran U
7 6 biimpd u = U U : I 1-1 onto ran U u : I 1-1 onto ran U
8 7 a1i R NzRing I W u = U U : I 1-1 onto ran U u : I 1-1 onto ran U
9 4 8 syl7 R NzRing I W u = U R NzRing I W u : I 1-1 onto ran U
10 9 imp R NzRing I W u = U R NzRing I W u : I 1-1 onto ran U
11 3 10 spcimedv R NzRing I W R NzRing I W u u : I 1-1 onto ran U
12 11 pm2.43i R NzRing I W u u : I 1-1 onto ran U
13 bren I ran U u u : I 1-1 onto ran U
14 12 13 sylibr R NzRing I W I ran U