Metamath Proof Explorer


Theorem uvcn0

Description: A unit vector is nonzero. (Contributed by Steven Nguyen, 16-Jul-2023)

Ref Expression
Hypotheses uvcn0.u U=RunitVecI
uvcn0.y Y=RfreeLModI
uvcn0.b B=BaseY
uvcn0.0 0˙=0Y
Assertion uvcn0 RNzRingIWJIUJ0˙

Proof

Step Hyp Ref Expression
1 uvcn0.u U=RunitVecI
2 uvcn0.y Y=RfreeLModI
3 uvcn0.b B=BaseY
4 uvcn0.0 0˙=0Y
5 eqid 1R=1R
6 eqid 0R=0R
7 5 6 nzrnz RNzRing1R0R
8 7 3ad2ant1 RNzRingIWJI1R0R
9 simp1 RNzRingIWJIRNzRing
10 simp2 RNzRingIWJIIW
11 simp3 RNzRingIWJIJI
12 1 9 10 11 5 uvcvv1 RNzRingIWJIUJJ=1R
13 nzrring RNzRingRRing
14 13 3ad2ant1 RNzRingIWJIRRing
15 2 6 14 10 11 frlm0vald RNzRingIWJI0YJ=0R
16 8 12 15 3netr4d RNzRingIWJIUJJ0YJ
17 fveq1 UJ=0YUJJ=0YJ
18 17 necon3i UJJ0YJUJ0Y
19 16 18 syl RNzRingIWJIUJ0Y
20 4 a1i RNzRingIWJI0˙=0Y
21 19 20 neeqtrrd RNzRingIWJIUJ0˙