Metamath Proof Explorer


Theorem uvcn0

Description: A unit vector is nonzero. (Contributed by Steven Nguyen, 16-Jul-2023)

Ref Expression
Hypotheses uvcn0.u U = R unitVec I
uvcn0.y Y = R freeLMod I
uvcn0.b B = Base Y
uvcn0.0 0 ˙ = 0 Y
Assertion uvcn0 R NzRing I W J I U J 0 ˙

Proof

Step Hyp Ref Expression
1 uvcn0.u U = R unitVec I
2 uvcn0.y Y = R freeLMod I
3 uvcn0.b B = Base Y
4 uvcn0.0 0 ˙ = 0 Y
5 eqid 1 R = 1 R
6 eqid 0 R = 0 R
7 5 6 nzrnz R NzRing 1 R 0 R
8 7 3ad2ant1 R NzRing I W J I 1 R 0 R
9 simp1 R NzRing I W J I R NzRing
10 simp2 R NzRing I W J I I W
11 simp3 R NzRing I W J I J I
12 1 9 10 11 5 uvcvv1 R NzRing I W J I U J J = 1 R
13 nzrring R NzRing R Ring
14 13 3ad2ant1 R NzRing I W J I R Ring
15 2 6 frlm0 R Ring I W I × 0 R = 0 Y
16 14 10 15 syl2anc R NzRing I W J I I × 0 R = 0 Y
17 16 4 syl6reqr R NzRing I W J I 0 ˙ = I × 0 R
18 17 fveq1d R NzRing I W J I 0 ˙ J = I × 0 R J
19 fvex 0 R V
20 19 fvconst2 J I I × 0 R J = 0 R
21 11 20 syl R NzRing I W J I I × 0 R J = 0 R
22 18 21 eqtrd R NzRing I W J I 0 ˙ J = 0 R
23 8 12 22 3netr4d R NzRing I W J I U J J 0 ˙ J
24 fveq1 U J = 0 ˙ U J J = 0 ˙ J
25 24 adantl R NzRing I W J I U J = 0 ˙ U J J = 0 ˙ J
26 23 25 mteqand R NzRing I W J I U J 0 ˙