Metamath Proof Explorer


Theorem uzin2

Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013)

Ref Expression
Assertion uzin2 AranBranABran

Proof

Step Hyp Ref Expression
1 uzf :𝒫
2 ffn :𝒫Fn
3 1 2 ax-mp Fn
4 fvelrnb FnAranxx=A
5 3 4 ax-mp Aranxx=A
6 fvelrnb FnBranyy=B
7 3 6 ax-mp Branyy=B
8 ineq1 x=Axy=Ay
9 8 eleq1d x=AxyranAyran
10 ineq2 y=BAy=AB
11 10 eleq1d y=BAyranABran
12 uzin xyxy=ifxyyx
13 ifcl yxifxyyx
14 13 ancoms xyifxyyx
15 fnfvelrn Fnifxyyxifxyyxran
16 3 14 15 sylancr xyifxyyxran
17 12 16 eqeltrd xyxyran
18 5 7 9 11 17 2gencl AranBranABran