Metamath Proof Explorer


Theorem uzrdglem

Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G=recxVx+1Cω
uzrdg.1 AV
uzrdg.2 R=recxV,yVx+1xFyCAω
Assertion uzrdglem BCB2ndRG-1BranR

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G=recxVx+1Cω
3 uzrdg.1 AV
4 uzrdg.2 R=recxV,yVx+1xFyCAω
5 1 2 om2uzf1oi G:ω1-1 ontoC
6 f1ocnvdm G:ω1-1 ontoCBCG-1Bω
7 5 6 mpan BCG-1Bω
8 1 2 3 4 om2uzrdg G-1BωRG-1B=GG-1B2ndRG-1B
9 7 8 syl BCRG-1B=GG-1B2ndRG-1B
10 f1ocnvfv2 G:ω1-1 ontoCBCGG-1B=B
11 5 10 mpan BCGG-1B=B
12 11 opeq1d BCGG-1B2ndRG-1B=B2ndRG-1B
13 9 12 eqtrd BCRG-1B=B2ndRG-1B
14 frfnom recxV,yVx+1xFyCAωFnω
15 4 fneq1i RFnωrecxV,yVx+1xFyCAωFnω
16 14 15 mpbir RFnω
17 fnfvelrn RFnωG-1BωRG-1BranR
18 16 7 17 sylancr BCRG-1BranR
19 13 18 eqeltrrd BCB2ndRG-1BranR