Metamath Proof Explorer


Theorem vc0

Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vc0.1 G=1stW
vc0.2 S=2ndW
vc0.3 X=ranG
vc0.4 Z=GIdG
Assertion vc0 WCVecOLDAX0SA=Z

Proof

Step Hyp Ref Expression
1 vc0.1 G=1stW
2 vc0.2 S=2ndW
3 vc0.3 X=ranG
4 vc0.4 Z=GIdG
5 1 3 4 vc0rid WCVecOLDAXAGZ=A
6 1p0e1 1+0=1
7 6 oveq1i 1+0SA=1SA
8 0cn 0
9 ax-1cn 1
10 1 2 3 vcdir WCVecOLD10AX1+0SA=1SAG0SA
11 9 10 mp3anr1 WCVecOLD0AX1+0SA=1SAG0SA
12 8 11 mpanr1 WCVecOLDAX1+0SA=1SAG0SA
13 1 2 3 vcidOLD WCVecOLDAX1SA=A
14 7 12 13 3eqtr3a WCVecOLDAX1SAG0SA=A
15 13 oveq1d WCVecOLDAX1SAG0SA=AG0SA
16 5 14 15 3eqtr2rd WCVecOLDAXAG0SA=AGZ
17 1 2 3 vccl WCVecOLD0AX0SAX
18 8 17 mp3an2 WCVecOLDAX0SAX
19 1 3 4 vczcl WCVecOLDZX
20 19 adantr WCVecOLDAXZX
21 simpr WCVecOLDAXAX
22 18 20 21 3jca WCVecOLDAX0SAXZXAX
23 1 3 vclcan WCVecOLD0SAXZXAXAG0SA=AGZ0SA=Z
24 22 23 syldan WCVecOLDAXAG0SA=AGZ0SA=Z
25 16 24 mpbid WCVecOLDAX0SA=Z