Metamath Proof Explorer


Theorem vdwap0

Description: Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion vdwap0 ADAAP0D=

Proof

Step Hyp Ref Expression
1 noel ¬m
2 1 pm2.21i m¬x=A+mD
3 risefall0lem 001=
4 2 3 eleq2s m001¬x=A+mD
5 4 nrex ¬m001x=A+mD
6 0nn0 00
7 vdwapval 00ADxAAP0Dm001x=A+mD
8 6 7 mp3an1 ADxAAP0Dm001x=A+mD
9 5 8 mtbiri AD¬xAAP0D
10 9 eq0rdv ADAAP0D=