Metamath Proof Explorer


Theorem vonhoi

Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). A direct consequence of Proposition 115D (b) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonhoi.x φ X Fin
vonhoi.a φ A : X
vonhoi.b φ B : X
vonhoi.c I = k X A k B k
vonhoi.l L = x Fin a x , b x if x = 0 k x vol a k b k
Assertion vonhoi φ voln X I = A L X B

Proof

Step Hyp Ref Expression
1 vonhoi.x φ X Fin
2 vonhoi.a φ A : X
3 vonhoi.b φ B : X
4 vonhoi.c I = k X A k B k
5 vonhoi.l L = x Fin a x , b x if x = 0 k x vol a k b k
6 eqid dom voln X = dom voln X
7 1 6 2 3 hoimbl φ k X A k B k dom voln X
8 4 7 eqeltrid φ I dom voln X
9 1 8 mblvon φ voln X I = voln* X I
10 1 2 3 4 5 ovnhoi φ voln* X I = A L X B
11 9 10 eqtrd φ voln X I = A L X B