Metamath Proof Explorer


Theorem vonhoi

Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). A direct consequence of Proposition 115D (b) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonhoi.x φXFin
vonhoi.a φA:X
vonhoi.b φB:X
vonhoi.c I=kXAkBk
vonhoi.l L=xFinax,bxifx=0kxvolakbk
Assertion vonhoi φvolnXI=ALXB

Proof

Step Hyp Ref Expression
1 vonhoi.x φXFin
2 vonhoi.a φA:X
3 vonhoi.b φB:X
4 vonhoi.c I=kXAkBk
5 vonhoi.l L=xFinax,bxifx=0kxvolakbk
6 eqid domvolnX=domvolnX
7 1 6 2 3 hoimbl φkXAkBkdomvolnX
8 4 7 eqeltrid φIdomvolnX
9 1 8 mblvon φvolnXI=voln*XI
10 1 2 3 4 5 ovnhoi φvoln*XI=ALXB
11 9 10 eqtrd φvolnXI=ALXB