Metamath Proof Explorer


Theorem vtxdgfival

Description: The degree of a vertex for graphs of finite size. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Jan-2018) (Revised by AV, 8-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypotheses vtxdgval.v V=VtxG
vtxdgval.i I=iEdgG
vtxdgval.a A=domI
Assertion vtxdgfival AFinUVVtxDegGU=xA|UIx+xA|Ix=U

Proof

Step Hyp Ref Expression
1 vtxdgval.v V=VtxG
2 vtxdgval.i I=iEdgG
3 vtxdgval.a A=domI
4 1 2 3 vtxdgval UVVtxDegGU=xA|UIx+𝑒xA|Ix=U
5 4 adantl AFinUVVtxDegGU=xA|UIx+𝑒xA|Ix=U
6 rabfi AFinxA|UIxFin
7 hashcl xA|UIxFinxA|UIx0
8 6 7 syl AFinxA|UIx0
9 8 nn0red AFinxA|UIx
10 rabfi AFinxA|Ix=UFin
11 hashcl xA|Ix=UFinxA|Ix=U0
12 10 11 syl AFinxA|Ix=U0
13 12 nn0red AFinxA|Ix=U
14 9 13 jca AFinxA|UIxxA|Ix=U
15 14 adantr AFinUVxA|UIxxA|Ix=U
16 rexadd xA|UIxxA|Ix=UxA|UIx+𝑒xA|Ix=U=xA|UIx+xA|Ix=U
17 15 16 syl AFinUVxA|UIx+𝑒xA|Ix=U=xA|UIx+xA|Ix=U
18 5 17 eqtrd AFinUVVtxDegGU=xA|UIx+xA|Ix=U