Metamath Proof Explorer


Theorem vtxdlfuhgr1v

Description: The degree of the vertex in a loop-free hypergraph with one vertex is 0. (Contributed by AV, 2-Apr-2021)

Ref Expression
Hypotheses vtxdlfuhgr1v.v V = Vtx G
vtxdlfuhgr1v.i I = iEdg G
vtxdlfuhgr1v.e E = x 𝒫 V | 2 x
Assertion vtxdlfuhgr1v G UHGraph V = 1 I : dom I E U V VtxDeg G U = 0

Proof

Step Hyp Ref Expression
1 vtxdlfuhgr1v.v V = Vtx G
2 vtxdlfuhgr1v.i I = iEdg G
3 vtxdlfuhgr1v.e E = x 𝒫 V | 2 x
4 simpl1 G UHGraph V = 1 I : dom I E U V G UHGraph
5 simpr G UHGraph V = 1 I : dom I E U V U V
6 1 2 3 lfuhgr1v0e G UHGraph V = 1 I : dom I E Edg G =
7 6 adantr G UHGraph V = 1 I : dom I E U V Edg G =
8 eqid Edg G = Edg G
9 1 8 vtxduhgr0e G UHGraph U V Edg G = VtxDeg G U = 0
10 4 5 7 9 syl3anc G UHGraph V = 1 I : dom I E U V VtxDeg G U = 0
11 10 ex G UHGraph V = 1 I : dom I E U V VtxDeg G U = 0