Metamath Proof Explorer


Theorem wfgru

Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Assertion wfgru UUnivUR1OnUniv

Proof

Step Hyp Ref Expression
1 dftr3 TrR1OnxR1OnxR1On
2 r1elssi xR1OnxR1On
3 1 2 mprgbir TrR1On
4 pwwf xR1On𝒫xR1On
5 4 biimpi xR1On𝒫xR1On
6 prwf xR1OnyR1OnxyR1On
7 6 ralrimiva xR1OnyR1OnxyR1On
8 frn y:xR1OnranyR1On
9 vex yV
10 9 rnex ranyV
11 10 r1elss ranyR1OnranyR1On
12 uniwf ranyR1OnranyR1On
13 11 12 bitr3i ranyR1OnranyR1On
14 8 13 sylib y:xR1OnranyR1On
15 14 ax-gen yy:xR1OnranyR1On
16 15 a1i xR1Onyy:xR1OnranyR1On
17 5 7 16 3jca xR1On𝒫xR1OnyR1OnxyR1Onyy:xR1OnranyR1On
18 17 rgen xR1On𝒫xR1OnyR1OnxyR1Onyy:xR1OnranyR1On
19 ingru TrR1OnxR1On𝒫xR1OnyR1OnxyR1Onyy:xR1OnranyR1OnUUnivUR1OnUniv
20 3 18 19 mp2an UUnivUR1OnUniv