| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|
| 2 |
|
eleq1 |
|
| 3 |
1 2
|
imbi12d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
|
breq1 |
|
| 6 |
|
eleq1 |
|
| 7 |
5 6
|
imbi12d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
r19.21v |
|
| 10 |
|
simpl1 |
|
| 11 |
|
vex |
|
| 12 |
|
onelss |
|
| 13 |
12
|
imp |
|
| 14 |
|
ssdomg |
|
| 15 |
11 13 14
|
mpsyl |
|
| 16 |
10 15
|
sylan |
|
| 17 |
|
simplr |
|
| 18 |
|
domtr |
|
| 19 |
16 17 18
|
syl2anc |
|
| 20 |
|
pm2.27 |
|
| 21 |
19 20
|
syl |
|
| 22 |
21
|
ralimdva |
|
| 23 |
|
dfss3 |
|
| 24 |
|
domeng |
|
| 25 |
24
|
3ad2ant3 |
|
| 26 |
25
|
biimpa |
|
| 27 |
|
simpl2 |
|
| 28 |
|
gruss |
|
| 29 |
28
|
3expia |
|
| 30 |
29
|
3adant1 |
|
| 31 |
30
|
adantr |
|
| 32 |
|
ensym |
|
| 33 |
31 32
|
anim12d1 |
|
| 34 |
33
|
ancomsd |
|
| 35 |
34
|
eximdv |
|
| 36 |
|
gruen |
|
| 37 |
36
|
3com23 |
|
| 38 |
37
|
3exp |
|
| 39 |
38
|
exlimdv |
|
| 40 |
27 35 39
|
sylsyld |
|
| 41 |
26 40
|
mpd |
|
| 42 |
23 41
|
biimtrrid |
|
| 43 |
22 42
|
syld |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
com23 |
|
| 46 |
45
|
3expib |
|
| 47 |
46
|
a2d |
|
| 48 |
9 47
|
biimtrid |
|
| 49 |
4 8 48
|
tfis3 |
|
| 50 |
49
|
com3l |
|
| 51 |
50
|
impr |
|
| 52 |
51
|
3impia |
|
| 53 |
52
|
3com23 |
|