Metamath Proof Explorer


Theorem gruina

Description: If a Grothendieck universe U is nonempty, then the height of the ordinals in U is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Hypothesis gruina.1 A = U On
Assertion gruina U Univ U A Inacc

Proof

Step Hyp Ref Expression
1 gruina.1 A = U On
2 n0 U x x U
3 0ss x
4 gruss U Univ x U x U
5 3 4 mp3an3 U Univ x U U
6 0elon On
7 elin U On U On
8 5 6 7 sylanblrc U Univ x U U On
9 8 1 eleqtrrdi U Univ x U A
10 9 ne0d U Univ x U A
11 10 expcom x U U Univ A
12 11 exlimiv x x U U Univ A
13 2 12 sylbi U U Univ A
14 13 impcom U Univ U A
15 grutr U Univ Tr U
16 tron Tr On
17 trin Tr U Tr On Tr U On
18 15 16 17 sylancl U Univ Tr U On
19 inss2 U On On
20 epweon E We On
21 wess U On On E We On E We U On
22 19 20 21 mp2 E We U On
23 df-ord Ord U On Tr U On E We U On
24 18 22 23 sylanblrc U Univ Ord U On
25 inex1g U Univ U On V
26 elon2 U On On Ord U On U On V
27 24 25 26 sylanbrc U Univ U On On
28 1 27 eqeltrid U Univ A On
29 28 adantr U Univ U A On
30 eloni A On Ord A
31 ordirr Ord A ¬ A A
32 30 31 syl A On ¬ A A
33 elin A U On A U A On
34 33 biimpri A U A On A U On
35 34 1 eleqtrrdi A U A On A A
36 35 expcom A On A U A A
37 32 36 mtod A On ¬ A U
38 29 37 syl U Univ U ¬ A U
39 inss1 U On U
40 1 39 eqsstri A U
41 40 sseli x A x U
42 vpwex 𝒫 x V
43 42 canth2 𝒫 x 𝒫 𝒫 x
44 42 pwex 𝒫 𝒫 x V
45 44 cardid card 𝒫 𝒫 x 𝒫 𝒫 x
46 45 ensymi 𝒫 𝒫 x card 𝒫 𝒫 x
47 28 adantr U Univ x U A On
48 grupw U Univ x U 𝒫 x U
49 grupw U Univ 𝒫 x U 𝒫 𝒫 x U
50 48 49 syldan U Univ x U 𝒫 𝒫 x U
51 28 adantr U Univ 𝒫 𝒫 x U A On
52 endom card 𝒫 𝒫 x 𝒫 𝒫 x card 𝒫 𝒫 x 𝒫 𝒫 x
53 45 52 ax-mp card 𝒫 𝒫 x 𝒫 𝒫 x
54 cardon card 𝒫 𝒫 x On
55 grudomon U Univ card 𝒫 𝒫 x On 𝒫 𝒫 x U card 𝒫 𝒫 x 𝒫 𝒫 x card 𝒫 𝒫 x U
56 54 55 mp3an2 U Univ 𝒫 𝒫 x U card 𝒫 𝒫 x 𝒫 𝒫 x card 𝒫 𝒫 x U
57 53 56 mpanr2 U Univ 𝒫 𝒫 x U card 𝒫 𝒫 x U
58 elin card 𝒫 𝒫 x U On card 𝒫 𝒫 x U card 𝒫 𝒫 x On
59 58 biimpri card 𝒫 𝒫 x U card 𝒫 𝒫 x On card 𝒫 𝒫 x U On
60 59 1 eleqtrrdi card 𝒫 𝒫 x U card 𝒫 𝒫 x On card 𝒫 𝒫 x A
61 57 54 60 sylancl U Univ 𝒫 𝒫 x U card 𝒫 𝒫 x A
62 onelss A On card 𝒫 𝒫 x A card 𝒫 𝒫 x A
63 51 61 62 sylc U Univ 𝒫 𝒫 x U card 𝒫 𝒫 x A
64 50 63 syldan U Univ x U card 𝒫 𝒫 x A
65 ssdomg A On card 𝒫 𝒫 x A card 𝒫 𝒫 x A
66 47 64 65 sylc U Univ x U card 𝒫 𝒫 x A
67 endomtr 𝒫 𝒫 x card 𝒫 𝒫 x card 𝒫 𝒫 x A 𝒫 𝒫 x A
68 46 66 67 sylancr U Univ x U 𝒫 𝒫 x A
69 sdomdomtr 𝒫 x 𝒫 𝒫 x 𝒫 𝒫 x A 𝒫 x A
70 43 68 69 sylancr U Univ x U 𝒫 x A
71 41 70 sylan2 U Univ x A 𝒫 x A
72 71 ralrimiva U Univ x A 𝒫 x A
73 inawinalem A On x A 𝒫 x A x A y A x y
74 28 72 73 sylc U Univ x A y A x y
75 74 adantr U Univ U x A y A x y
76 winainflem A A On x A y A x y ω A
77 14 29 75 76 syl3anc U Univ U ω A
78 vex x V
79 78 canth2 x 𝒫 x
80 sdomtr x 𝒫 x 𝒫 x A x A
81 79 71 80 sylancr U Univ x A x A
82 81 ralrimiva U Univ x A x A
83 iscard card A = A A On x A x A
84 28 82 83 sylanbrc U Univ card A = A
85 cardlim ω card A Lim card A
86 sseq2 card A = A ω card A ω A
87 limeq card A = A Lim card A Lim A
88 86 87 bibi12d card A = A ω card A Lim card A ω A Lim A
89 85 88 mpbii card A = A ω A Lim A
90 84 89 syl U Univ ω A Lim A
91 90 adantr U Univ U ω A Lim A
92 77 91 mpbid U Univ U Lim A
93 cflm A On Lim A cf A = x | y x = card y y A A = y
94 29 92 93 syl2anc U Univ U cf A = x | y x = card y y A A = y
95 cardon card y On
96 eleq1 x = card y x On card y On
97 95 96 mpbiri x = card y x On
98 97 adantr x = card y y A A = y x On
99 98 exlimiv y x = card y y A A = y x On
100 99 abssi x | y x = card y y A A = y On
101 fvex cf A V
102 94 101 eqeltrrdi U Univ U x | y x = card y y A A = y V
103 intex x | y x = card y y A A = y x | y x = card y y A A = y V
104 102 103 sylibr U Univ U x | y x = card y y A A = y
105 onint x | y x = card y y A A = y On x | y x = card y y A A = y x | y x = card y y A A = y x | y x = card y y A A = y
106 100 104 105 sylancr U Univ U x | y x = card y y A A = y x | y x = card y y A A = y
107 94 106 eqeltrd U Univ U cf A x | y x = card y y A A = y
108 eqeq1 x = cf A x = card y cf A = card y
109 108 anbi1d x = cf A x = card y y A A = y cf A = card y y A A = y
110 109 exbidv x = cf A y x = card y y A A = y y cf A = card y y A A = y
111 101 110 elab cf A x | y x = card y y A A = y y cf A = card y y A A = y
112 107 111 sylib U Univ U y cf A = card y y A A = y
113 simp2rr U Univ U cf A = card y y A A = y cf A A A = y
114 simp1l U Univ U cf A = card y y A A = y cf A A U Univ
115 simp2rl U Univ U cf A = card y y A A = y cf A A y A
116 115 40 sstrdi U Univ U cf A = card y y A A = y cf A A y U
117 40 sseli cf A A cf A U
118 117 3ad2ant3 U Univ U cf A = card y y A A = y cf A A cf A U
119 simp2l U Univ U cf A = card y y A A = y cf A A cf A = card y
120 vex y V
121 120 cardid card y y
122 119 121 eqbrtrdi U Univ U cf A = card y y A A = y cf A A cf A y
123 gruen U Univ y U cf A U cf A y y U
124 114 116 118 122 123 syl112anc U Univ U cf A = card y y A A = y cf A A y U
125 gruuni U Univ y U y U
126 114 124 125 syl2anc U Univ U cf A = card y y A A = y cf A A y U
127 113 126 eqeltrd U Univ U cf A = card y y A A = y cf A A A U
128 127 3exp U Univ U cf A = card y y A A = y cf A A A U
129 128 exlimdv U Univ U y cf A = card y y A A = y cf A A A U
130 112 129 mpd U Univ U cf A A A U
131 38 130 mtod U Univ U ¬ cf A A
132 cfon cf A On
133 cfle cf A A
134 onsseleq cf A On A On cf A A cf A A cf A = A
135 133 134 mpbii cf A On A On cf A A cf A = A
136 132 135 mpan A On cf A A cf A = A
137 136 ord A On ¬ cf A A cf A = A
138 29 131 137 sylc U Univ U cf A = A
139 72 adantr U Univ U x A 𝒫 x A
140 elina A Inacc A cf A = A x A 𝒫 x A
141 14 138 139 140 syl3anbrc U Univ U A Inacc