Metamath Proof Explorer


Theorem grur1a

Description: A characterization of Grothendieck universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Hypothesis gruina.1 A=UOn
Assertion grur1a UUnivR1AU

Proof

Step Hyp Ref Expression
1 gruina.1 A=UOn
2 inss1 UOnU
3 1 2 eqsstri AU
4 sseq2 U=AUA
5 3 4 mpbii U=A
6 ss0 AA=
7 fveq2 A=R1A=R1
8 r10 R1=
9 7 8 eqtrdi A=R1A=
10 0ss U
11 9 10 eqsstrdi A=R1AU
12 5 6 11 3syl U=R1AU
13 12 a1i UUnivU=R1AU
14 1 gruina UUnivUAInacc
15 inawina AInaccAInacc𝑤
16 winaon AInacc𝑤AOn
17 winalim AInacc𝑤LimA
18 r1lim AOnLimAR1A=xAR1x
19 16 17 18 syl2anc AInacc𝑤R1A=xAR1x
20 14 15 19 3syl UUnivUR1A=xAR1x
21 inss2 UOnOn
22 1 21 eqsstri AOn
23 22 sseli xAxOn
24 eleq1 x=xAA
25 fveq2 x=R1x=R1
26 25 8 eqtrdi x=R1x=
27 26 eleq1d x=R1xUU
28 24 27 imbi12d x=xAR1xUAU
29 eleq1 x=yxAyA
30 fveq2 x=yR1x=R1y
31 30 eleq1d x=yR1xUR1yU
32 29 31 imbi12d x=yxAR1xUyAR1yU
33 eleq1 x=sucyxAsucyA
34 fveq2 x=sucyR1x=R1sucy
35 34 eleq1d x=sucyR1xUR1sucyU
36 33 35 imbi12d x=sucyxAR1xUsucyAR1sucyU
37 3 sseli AU
38 37 a1i UUnivAU
39 simpr UUnivsucyAsucyA
40 elelsuc sucyAsucysucA
41 3 sseli sucyAsucyU
42 41 ne0d sucyAU
43 14 15 16 3syl UUnivUAOn
44 42 43 sylan2 UUnivsucyAAOn
45 eloni AOnOrdA
46 ordsucelsuc OrdAyAsucysucA
47 44 45 46 3syl UUnivsucyAyAsucysucA
48 40 47 imbitrrid UUnivsucyAsucyAyA
49 39 48 mpd UUnivsucyAyA
50 grupw UUnivR1yU𝒫R1yU
51 50 ex UUnivR1yU𝒫R1yU
52 51 adantr UUnivsucyAR1yU𝒫R1yU
53 r1suc yOnR1sucy=𝒫R1y
54 53 eleq1d yOnR1sucyU𝒫R1yU
55 54 biimprcd 𝒫R1yUyOnR1sucyU
56 52 55 syl6 UUnivsucyAR1yUyOnR1sucyU
57 49 56 embantd UUnivsucyAyAR1yUyOnR1sucyU
58 57 ex UUnivsucyAyAR1yUyOnR1sucyU
59 58 com23 UUnivyAR1yUsucyAyOnR1sucyU
60 59 com4r yOnUUnivyAR1yUsucyAR1sucyU
61 simpr UUnivxAxA
62 3 sseli xAxU
63 62 ne0d xAU
64 63 43 sylan2 UUnivxAAOn
65 ontr1 AOnyxxAyA
66 pm2.27 yAyAR1yUR1yU
67 65 66 syl6 AOnyxxAyAR1yUR1yU
68 67 expd AOnyxxAyAR1yUR1yU
69 68 com3r xAAOnyxyAR1yUR1yU
70 61 64 69 sylc UUnivxAyxyAR1yUR1yU
71 70 imp UUnivxAyxyAR1yUR1yU
72 71 ralimdva UUnivxAyxyAR1yUyxR1yU
73 gruiun UUnivxUyxR1yUyxR1yU
74 73 3expia UUnivxUyxR1yUyxR1yU
75 62 74 sylan2 UUnivxAyxR1yUyxR1yU
76 72 75 syld UUnivxAyxyAR1yUyxR1yU
77 vex xV
78 r1lim xVLimxR1x=yxR1y
79 77 78 mpan LimxR1x=yxR1y
80 79 eleq1d LimxR1xUyxR1yU
81 80 biimprd LimxyxR1yUR1xU
82 76 81 sylan9r LimxUUnivxAyxyAR1yUR1xU
83 82 exp32 LimxUUnivxAyxyAR1yUR1xU
84 83 com34 LimxUUnivyxyAR1yUxAR1xU
85 28 32 36 38 60 84 tfinds2 xOnUUnivxAR1xU
86 85 com3r xAxOnUUnivR1xU
87 23 86 mpd xAUUnivR1xU
88 87 impcom UUnivxAR1xU
89 gruelss UUnivR1xUR1xU
90 88 89 syldan UUnivxAR1xU
91 90 ralrimiva UUnivxAR1xU
92 iunss xAR1xUxAR1xU
93 91 92 sylibr UUnivxAR1xU
94 93 adantr UUnivUxAR1xU
95 20 94 eqsstrd UUnivUR1AU
96 95 ex UUnivUR1AU
97 13 96 pm2.61dne UUnivR1AU