| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gruina.1 |
|- A = ( U i^i On ) |
| 2 |
|
n0 |
|- ( U =/= (/) <-> E. x x e. U ) |
| 3 |
|
0ss |
|- (/) C_ x |
| 4 |
|
gruss |
|- ( ( U e. Univ /\ x e. U /\ (/) C_ x ) -> (/) e. U ) |
| 5 |
3 4
|
mp3an3 |
|- ( ( U e. Univ /\ x e. U ) -> (/) e. U ) |
| 6 |
|
0elon |
|- (/) e. On |
| 7 |
|
elin |
|- ( (/) e. ( U i^i On ) <-> ( (/) e. U /\ (/) e. On ) ) |
| 8 |
5 6 7
|
sylanblrc |
|- ( ( U e. Univ /\ x e. U ) -> (/) e. ( U i^i On ) ) |
| 9 |
8 1
|
eleqtrrdi |
|- ( ( U e. Univ /\ x e. U ) -> (/) e. A ) |
| 10 |
9
|
ne0d |
|- ( ( U e. Univ /\ x e. U ) -> A =/= (/) ) |
| 11 |
10
|
expcom |
|- ( x e. U -> ( U e. Univ -> A =/= (/) ) ) |
| 12 |
11
|
exlimiv |
|- ( E. x x e. U -> ( U e. Univ -> A =/= (/) ) ) |
| 13 |
2 12
|
sylbi |
|- ( U =/= (/) -> ( U e. Univ -> A =/= (/) ) ) |
| 14 |
13
|
impcom |
|- ( ( U e. Univ /\ U =/= (/) ) -> A =/= (/) ) |
| 15 |
|
grutr |
|- ( U e. Univ -> Tr U ) |
| 16 |
|
tron |
|- Tr On |
| 17 |
|
trin |
|- ( ( Tr U /\ Tr On ) -> Tr ( U i^i On ) ) |
| 18 |
15 16 17
|
sylancl |
|- ( U e. Univ -> Tr ( U i^i On ) ) |
| 19 |
|
inss2 |
|- ( U i^i On ) C_ On |
| 20 |
|
epweon |
|- _E We On |
| 21 |
|
wess |
|- ( ( U i^i On ) C_ On -> ( _E We On -> _E We ( U i^i On ) ) ) |
| 22 |
19 20 21
|
mp2 |
|- _E We ( U i^i On ) |
| 23 |
|
df-ord |
|- ( Ord ( U i^i On ) <-> ( Tr ( U i^i On ) /\ _E We ( U i^i On ) ) ) |
| 24 |
18 22 23
|
sylanblrc |
|- ( U e. Univ -> Ord ( U i^i On ) ) |
| 25 |
|
inex1g |
|- ( U e. Univ -> ( U i^i On ) e. _V ) |
| 26 |
|
elon2 |
|- ( ( U i^i On ) e. On <-> ( Ord ( U i^i On ) /\ ( U i^i On ) e. _V ) ) |
| 27 |
24 25 26
|
sylanbrc |
|- ( U e. Univ -> ( U i^i On ) e. On ) |
| 28 |
1 27
|
eqeltrid |
|- ( U e. Univ -> A e. On ) |
| 29 |
28
|
adantr |
|- ( ( U e. Univ /\ U =/= (/) ) -> A e. On ) |
| 30 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 31 |
|
ordirr |
|- ( Ord A -> -. A e. A ) |
| 32 |
30 31
|
syl |
|- ( A e. On -> -. A e. A ) |
| 33 |
|
elin |
|- ( A e. ( U i^i On ) <-> ( A e. U /\ A e. On ) ) |
| 34 |
33
|
biimpri |
|- ( ( A e. U /\ A e. On ) -> A e. ( U i^i On ) ) |
| 35 |
34 1
|
eleqtrrdi |
|- ( ( A e. U /\ A e. On ) -> A e. A ) |
| 36 |
35
|
expcom |
|- ( A e. On -> ( A e. U -> A e. A ) ) |
| 37 |
32 36
|
mtod |
|- ( A e. On -> -. A e. U ) |
| 38 |
29 37
|
syl |
|- ( ( U e. Univ /\ U =/= (/) ) -> -. A e. U ) |
| 39 |
|
inss1 |
|- ( U i^i On ) C_ U |
| 40 |
1 39
|
eqsstri |
|- A C_ U |
| 41 |
40
|
sseli |
|- ( x e. A -> x e. U ) |
| 42 |
|
vpwex |
|- ~P x e. _V |
| 43 |
42
|
canth2 |
|- ~P x ~< ~P ~P x |
| 44 |
42
|
pwex |
|- ~P ~P x e. _V |
| 45 |
44
|
cardid |
|- ( card ` ~P ~P x ) ~~ ~P ~P x |
| 46 |
45
|
ensymi |
|- ~P ~P x ~~ ( card ` ~P ~P x ) |
| 47 |
28
|
adantr |
|- ( ( U e. Univ /\ x e. U ) -> A e. On ) |
| 48 |
|
grupw |
|- ( ( U e. Univ /\ x e. U ) -> ~P x e. U ) |
| 49 |
|
grupw |
|- ( ( U e. Univ /\ ~P x e. U ) -> ~P ~P x e. U ) |
| 50 |
48 49
|
syldan |
|- ( ( U e. Univ /\ x e. U ) -> ~P ~P x e. U ) |
| 51 |
28
|
adantr |
|- ( ( U e. Univ /\ ~P ~P x e. U ) -> A e. On ) |
| 52 |
|
endom |
|- ( ( card ` ~P ~P x ) ~~ ~P ~P x -> ( card ` ~P ~P x ) ~<_ ~P ~P x ) |
| 53 |
45 52
|
ax-mp |
|- ( card ` ~P ~P x ) ~<_ ~P ~P x |
| 54 |
|
cardon |
|- ( card ` ~P ~P x ) e. On |
| 55 |
|
grudomon |
|- ( ( U e. Univ /\ ( card ` ~P ~P x ) e. On /\ ( ~P ~P x e. U /\ ( card ` ~P ~P x ) ~<_ ~P ~P x ) ) -> ( card ` ~P ~P x ) e. U ) |
| 56 |
54 55
|
mp3an2 |
|- ( ( U e. Univ /\ ( ~P ~P x e. U /\ ( card ` ~P ~P x ) ~<_ ~P ~P x ) ) -> ( card ` ~P ~P x ) e. U ) |
| 57 |
53 56
|
mpanr2 |
|- ( ( U e. Univ /\ ~P ~P x e. U ) -> ( card ` ~P ~P x ) e. U ) |
| 58 |
|
elin |
|- ( ( card ` ~P ~P x ) e. ( U i^i On ) <-> ( ( card ` ~P ~P x ) e. U /\ ( card ` ~P ~P x ) e. On ) ) |
| 59 |
58
|
biimpri |
|- ( ( ( card ` ~P ~P x ) e. U /\ ( card ` ~P ~P x ) e. On ) -> ( card ` ~P ~P x ) e. ( U i^i On ) ) |
| 60 |
59 1
|
eleqtrrdi |
|- ( ( ( card ` ~P ~P x ) e. U /\ ( card ` ~P ~P x ) e. On ) -> ( card ` ~P ~P x ) e. A ) |
| 61 |
57 54 60
|
sylancl |
|- ( ( U e. Univ /\ ~P ~P x e. U ) -> ( card ` ~P ~P x ) e. A ) |
| 62 |
|
onelss |
|- ( A e. On -> ( ( card ` ~P ~P x ) e. A -> ( card ` ~P ~P x ) C_ A ) ) |
| 63 |
51 61 62
|
sylc |
|- ( ( U e. Univ /\ ~P ~P x e. U ) -> ( card ` ~P ~P x ) C_ A ) |
| 64 |
50 63
|
syldan |
|- ( ( U e. Univ /\ x e. U ) -> ( card ` ~P ~P x ) C_ A ) |
| 65 |
|
ssdomg |
|- ( A e. On -> ( ( card ` ~P ~P x ) C_ A -> ( card ` ~P ~P x ) ~<_ A ) ) |
| 66 |
47 64 65
|
sylc |
|- ( ( U e. Univ /\ x e. U ) -> ( card ` ~P ~P x ) ~<_ A ) |
| 67 |
|
endomtr |
|- ( ( ~P ~P x ~~ ( card ` ~P ~P x ) /\ ( card ` ~P ~P x ) ~<_ A ) -> ~P ~P x ~<_ A ) |
| 68 |
46 66 67
|
sylancr |
|- ( ( U e. Univ /\ x e. U ) -> ~P ~P x ~<_ A ) |
| 69 |
|
sdomdomtr |
|- ( ( ~P x ~< ~P ~P x /\ ~P ~P x ~<_ A ) -> ~P x ~< A ) |
| 70 |
43 68 69
|
sylancr |
|- ( ( U e. Univ /\ x e. U ) -> ~P x ~< A ) |
| 71 |
41 70
|
sylan2 |
|- ( ( U e. Univ /\ x e. A ) -> ~P x ~< A ) |
| 72 |
71
|
ralrimiva |
|- ( U e. Univ -> A. x e. A ~P x ~< A ) |
| 73 |
|
inawinalem |
|- ( A e. On -> ( A. x e. A ~P x ~< A -> A. x e. A E. y e. A x ~< y ) ) |
| 74 |
28 72 73
|
sylc |
|- ( U e. Univ -> A. x e. A E. y e. A x ~< y ) |
| 75 |
74
|
adantr |
|- ( ( U e. Univ /\ U =/= (/) ) -> A. x e. A E. y e. A x ~< y ) |
| 76 |
|
winainflem |
|- ( ( A =/= (/) /\ A e. On /\ A. x e. A E. y e. A x ~< y ) -> _om C_ A ) |
| 77 |
14 29 75 76
|
syl3anc |
|- ( ( U e. Univ /\ U =/= (/) ) -> _om C_ A ) |
| 78 |
|
vex |
|- x e. _V |
| 79 |
78
|
canth2 |
|- x ~< ~P x |
| 80 |
|
sdomtr |
|- ( ( x ~< ~P x /\ ~P x ~< A ) -> x ~< A ) |
| 81 |
79 71 80
|
sylancr |
|- ( ( U e. Univ /\ x e. A ) -> x ~< A ) |
| 82 |
81
|
ralrimiva |
|- ( U e. Univ -> A. x e. A x ~< A ) |
| 83 |
|
iscard |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) ) |
| 84 |
28 82 83
|
sylanbrc |
|- ( U e. Univ -> ( card ` A ) = A ) |
| 85 |
|
cardlim |
|- ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) |
| 86 |
|
sseq2 |
|- ( ( card ` A ) = A -> ( _om C_ ( card ` A ) <-> _om C_ A ) ) |
| 87 |
|
limeq |
|- ( ( card ` A ) = A -> ( Lim ( card ` A ) <-> Lim A ) ) |
| 88 |
86 87
|
bibi12d |
|- ( ( card ` A ) = A -> ( ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) <-> ( _om C_ A <-> Lim A ) ) ) |
| 89 |
85 88
|
mpbii |
|- ( ( card ` A ) = A -> ( _om C_ A <-> Lim A ) ) |
| 90 |
84 89
|
syl |
|- ( U e. Univ -> ( _om C_ A <-> Lim A ) ) |
| 91 |
90
|
adantr |
|- ( ( U e. Univ /\ U =/= (/) ) -> ( _om C_ A <-> Lim A ) ) |
| 92 |
77 91
|
mpbid |
|- ( ( U e. Univ /\ U =/= (/) ) -> Lim A ) |
| 93 |
|
cflm |
|- ( ( A e. On /\ Lim A ) -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } ) |
| 94 |
29 92 93
|
syl2anc |
|- ( ( U e. Univ /\ U =/= (/) ) -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } ) |
| 95 |
|
cardon |
|- ( card ` y ) e. On |
| 96 |
|
eleq1 |
|- ( x = ( card ` y ) -> ( x e. On <-> ( card ` y ) e. On ) ) |
| 97 |
95 96
|
mpbiri |
|- ( x = ( card ` y ) -> x e. On ) |
| 98 |
97
|
adantr |
|- ( ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) -> x e. On ) |
| 99 |
98
|
exlimiv |
|- ( E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) -> x e. On ) |
| 100 |
99
|
abssi |
|- { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } C_ On |
| 101 |
|
fvex |
|- ( cf ` A ) e. _V |
| 102 |
94 101
|
eqeltrrdi |
|- ( ( U e. Univ /\ U =/= (/) ) -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } e. _V ) |
| 103 |
|
intex |
|- ( { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } =/= (/) <-> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } e. _V ) |
| 104 |
102 103
|
sylibr |
|- ( ( U e. Univ /\ U =/= (/) ) -> { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } =/= (/) ) |
| 105 |
|
onint |
|- ( ( { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } C_ On /\ { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } =/= (/) ) -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } ) |
| 106 |
100 104 105
|
sylancr |
|- ( ( U e. Univ /\ U =/= (/) ) -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } ) |
| 107 |
94 106
|
eqeltrd |
|- ( ( U e. Univ /\ U =/= (/) ) -> ( cf ` A ) e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } ) |
| 108 |
|
eqeq1 |
|- ( x = ( cf ` A ) -> ( x = ( card ` y ) <-> ( cf ` A ) = ( card ` y ) ) ) |
| 109 |
108
|
anbi1d |
|- ( x = ( cf ` A ) -> ( ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) <-> ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) ) ) |
| 110 |
109
|
exbidv |
|- ( x = ( cf ` A ) -> ( E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) <-> E. y ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) ) ) |
| 111 |
101 110
|
elab |
|- ( ( cf ` A ) e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) } <-> E. y ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) ) |
| 112 |
107 111
|
sylib |
|- ( ( U e. Univ /\ U =/= (/) ) -> E. y ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) ) |
| 113 |
|
simp2rr |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> A = U. y ) |
| 114 |
|
simp1l |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> U e. Univ ) |
| 115 |
|
simp2rl |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> y C_ A ) |
| 116 |
115 40
|
sstrdi |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> y C_ U ) |
| 117 |
40
|
sseli |
|- ( ( cf ` A ) e. A -> ( cf ` A ) e. U ) |
| 118 |
117
|
3ad2ant3 |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> ( cf ` A ) e. U ) |
| 119 |
|
simp2l |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> ( cf ` A ) = ( card ` y ) ) |
| 120 |
|
vex |
|- y e. _V |
| 121 |
120
|
cardid |
|- ( card ` y ) ~~ y |
| 122 |
119 121
|
eqbrtrdi |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> ( cf ` A ) ~~ y ) |
| 123 |
|
gruen |
|- ( ( U e. Univ /\ y C_ U /\ ( ( cf ` A ) e. U /\ ( cf ` A ) ~~ y ) ) -> y e. U ) |
| 124 |
114 116 118 122 123
|
syl112anc |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> y e. U ) |
| 125 |
|
gruuni |
|- ( ( U e. Univ /\ y e. U ) -> U. y e. U ) |
| 126 |
114 124 125
|
syl2anc |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> U. y e. U ) |
| 127 |
113 126
|
eqeltrd |
|- ( ( ( U e. Univ /\ U =/= (/) ) /\ ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) /\ ( cf ` A ) e. A ) -> A e. U ) |
| 128 |
127
|
3exp |
|- ( ( U e. Univ /\ U =/= (/) ) -> ( ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) -> ( ( cf ` A ) e. A -> A e. U ) ) ) |
| 129 |
128
|
exlimdv |
|- ( ( U e. Univ /\ U =/= (/) ) -> ( E. y ( ( cf ` A ) = ( card ` y ) /\ ( y C_ A /\ A = U. y ) ) -> ( ( cf ` A ) e. A -> A e. U ) ) ) |
| 130 |
112 129
|
mpd |
|- ( ( U e. Univ /\ U =/= (/) ) -> ( ( cf ` A ) e. A -> A e. U ) ) |
| 131 |
38 130
|
mtod |
|- ( ( U e. Univ /\ U =/= (/) ) -> -. ( cf ` A ) e. A ) |
| 132 |
|
cfon |
|- ( cf ` A ) e. On |
| 133 |
|
cfle |
|- ( cf ` A ) C_ A |
| 134 |
|
onsseleq |
|- ( ( ( cf ` A ) e. On /\ A e. On ) -> ( ( cf ` A ) C_ A <-> ( ( cf ` A ) e. A \/ ( cf ` A ) = A ) ) ) |
| 135 |
133 134
|
mpbii |
|- ( ( ( cf ` A ) e. On /\ A e. On ) -> ( ( cf ` A ) e. A \/ ( cf ` A ) = A ) ) |
| 136 |
132 135
|
mpan |
|- ( A e. On -> ( ( cf ` A ) e. A \/ ( cf ` A ) = A ) ) |
| 137 |
136
|
ord |
|- ( A e. On -> ( -. ( cf ` A ) e. A -> ( cf ` A ) = A ) ) |
| 138 |
29 131 137
|
sylc |
|- ( ( U e. Univ /\ U =/= (/) ) -> ( cf ` A ) = A ) |
| 139 |
72
|
adantr |
|- ( ( U e. Univ /\ U =/= (/) ) -> A. x e. A ~P x ~< A ) |
| 140 |
|
elina |
|- ( A e. Inacc <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) ) |
| 141 |
14 138 139 140
|
syl3anbrc |
|- ( ( U e. Univ /\ U =/= (/) ) -> A e. Inacc ) |