Metamath Proof Explorer


Theorem cardlim

Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of TakeutiZaring p. 91. (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Assertion cardlim
|- ( _om C_ ( card ` A ) <-> Lim ( card ` A ) )

Proof

Step Hyp Ref Expression
1 sseq2
 |-  ( ( card ` A ) = suc x -> ( _om C_ ( card ` A ) <-> _om C_ suc x ) )
2 1 biimpd
 |-  ( ( card ` A ) = suc x -> ( _om C_ ( card ` A ) -> _om C_ suc x ) )
3 limom
 |-  Lim _om
4 limsssuc
 |-  ( Lim _om -> ( _om C_ x <-> _om C_ suc x ) )
5 3 4 ax-mp
 |-  ( _om C_ x <-> _om C_ suc x )
6 infensuc
 |-  ( ( x e. On /\ _om C_ x ) -> x ~~ suc x )
7 6 ex
 |-  ( x e. On -> ( _om C_ x -> x ~~ suc x ) )
8 5 7 syl5bir
 |-  ( x e. On -> ( _om C_ suc x -> x ~~ suc x ) )
9 2 8 sylan9r
 |-  ( ( x e. On /\ ( card ` A ) = suc x ) -> ( _om C_ ( card ` A ) -> x ~~ suc x ) )
10 breq2
 |-  ( ( card ` A ) = suc x -> ( x ~~ ( card ` A ) <-> x ~~ suc x ) )
11 10 adantl
 |-  ( ( x e. On /\ ( card ` A ) = suc x ) -> ( x ~~ ( card ` A ) <-> x ~~ suc x ) )
12 9 11 sylibrd
 |-  ( ( x e. On /\ ( card ` A ) = suc x ) -> ( _om C_ ( card ` A ) -> x ~~ ( card ` A ) ) )
13 12 ex
 |-  ( x e. On -> ( ( card ` A ) = suc x -> ( _om C_ ( card ` A ) -> x ~~ ( card ` A ) ) ) )
14 13 com3r
 |-  ( _om C_ ( card ` A ) -> ( x e. On -> ( ( card ` A ) = suc x -> x ~~ ( card ` A ) ) ) )
15 14 imp
 |-  ( ( _om C_ ( card ` A ) /\ x e. On ) -> ( ( card ` A ) = suc x -> x ~~ ( card ` A ) ) )
16 vex
 |-  x e. _V
17 16 sucid
 |-  x e. suc x
18 eleq2
 |-  ( ( card ` A ) = suc x -> ( x e. ( card ` A ) <-> x e. suc x ) )
19 17 18 mpbiri
 |-  ( ( card ` A ) = suc x -> x e. ( card ` A ) )
20 cardidm
 |-  ( card ` ( card ` A ) ) = ( card ` A )
21 19 20 eleqtrrdi
 |-  ( ( card ` A ) = suc x -> x e. ( card ` ( card ` A ) ) )
22 cardne
 |-  ( x e. ( card ` ( card ` A ) ) -> -. x ~~ ( card ` A ) )
23 21 22 syl
 |-  ( ( card ` A ) = suc x -> -. x ~~ ( card ` A ) )
24 23 a1i
 |-  ( ( _om C_ ( card ` A ) /\ x e. On ) -> ( ( card ` A ) = suc x -> -. x ~~ ( card ` A ) ) )
25 15 24 pm2.65d
 |-  ( ( _om C_ ( card ` A ) /\ x e. On ) -> -. ( card ` A ) = suc x )
26 25 nrexdv
 |-  ( _om C_ ( card ` A ) -> -. E. x e. On ( card ` A ) = suc x )
27 peano1
 |-  (/) e. _om
28 ssel
 |-  ( _om C_ ( card ` A ) -> ( (/) e. _om -> (/) e. ( card ` A ) ) )
29 27 28 mpi
 |-  ( _om C_ ( card ` A ) -> (/) e. ( card ` A ) )
30 n0i
 |-  ( (/) e. ( card ` A ) -> -. ( card ` A ) = (/) )
31 cardon
 |-  ( card ` A ) e. On
32 31 onordi
 |-  Ord ( card ` A )
33 ordzsl
 |-  ( Ord ( card ` A ) <-> ( ( card ` A ) = (/) \/ E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) )
34 32 33 mpbi
 |-  ( ( card ` A ) = (/) \/ E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) )
35 3orass
 |-  ( ( ( card ` A ) = (/) \/ E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) <-> ( ( card ` A ) = (/) \/ ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) )
36 34 35 mpbi
 |-  ( ( card ` A ) = (/) \/ ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) )
37 36 ori
 |-  ( -. ( card ` A ) = (/) -> ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) )
38 29 30 37 3syl
 |-  ( _om C_ ( card ` A ) -> ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) )
39 38 ord
 |-  ( _om C_ ( card ` A ) -> ( -. E. x e. On ( card ` A ) = suc x -> Lim ( card ` A ) ) )
40 26 39 mpd
 |-  ( _om C_ ( card ` A ) -> Lim ( card ` A ) )
41 limomss
 |-  ( Lim ( card ` A ) -> _om C_ ( card ` A ) )
42 40 41 impbii
 |-  ( _om C_ ( card ` A ) <-> Lim ( card ` A ) )