Metamath Proof Explorer


Theorem wfrfunOLD

Description: Obsolete proof of wfrfun as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfrfunOLD.1 RWeA
wfrfunOLD.2 RSeA
wfrfunOLD.3 F=wrecsRAG
Assertion wfrfunOLD FunF

Proof

Step Hyp Ref Expression
1 wfrfunOLD.1 RWeA
2 wfrfunOLD.2 RSeA
3 wfrfunOLD.3 F=wrecsRAG
4 3 wfrrelOLD RelF
5 dfwrecsOLD wrecsRAG=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
6 3 5 eqtri F=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
7 6 eleq2i xuFxuf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
8 eluni xuf|xfFnxxAyxPredRAyxyxfy=GfPredRAygxuggf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
9 7 8 bitri xuFgxuggf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
10 df-br xFuxuF
11 df-br xguxug
12 11 anbi1i xgugf|xfFnxxAyxPredRAyxyxfy=GfPredRAyxuggf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
13 12 exbii gxgugf|xfFnxxAyxPredRAyxyxfy=GfPredRAygxuggf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
14 9 10 13 3bitr4i xFugxgugf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
15 6 eleq2i xvFxvf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
16 eluni xvf|xfFnxxAyxPredRAyxyxfy=GfPredRAyhxvhhf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
17 15 16 bitri xvFhxvhhf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
18 df-br xFvxvF
19 df-br xhvxvh
20 19 anbi1i xhvhf|xfFnxxAyxPredRAyxyxfy=GfPredRAyxvhhf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
21 20 exbii hxhvhf|xfFnxxAyxPredRAyxyxfy=GfPredRAyhxvhhf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
22 17 18 21 3bitr4i xFvhxhvhf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
23 14 22 anbi12i xFuxFvgxgugf|xfFnxxAyxPredRAyxyxfy=GfPredRAyhxhvhf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
24 exdistrv ghxgugf|xfFnxxAyxPredRAyxyxfy=GfPredRAyxhvhf|xfFnxxAyxPredRAyxyxfy=GfPredRAygxgugf|xfFnxxAyxPredRAyxyxfy=GfPredRAyhxhvhf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
25 23 24 bitr4i xFuxFvghxgugf|xfFnxxAyxPredRAyxyxfy=GfPredRAyxhvhf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
26 eqid f|xfFnxxAyxPredRAyxyxfy=GfPredRAy=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
27 1 2 26 wfrlem5OLD gf|xfFnxxAyxPredRAyxyxfy=GfPredRAyhf|xfFnxxAyxPredRAyxyxfy=GfPredRAyxguxhvu=v
28 27 impcom xguxhvgf|xfFnxxAyxPredRAyxyxfy=GfPredRAyhf|xfFnxxAyxPredRAyxyxfy=GfPredRAyu=v
29 28 an4s xgugf|xfFnxxAyxPredRAyxyxfy=GfPredRAyxhvhf|xfFnxxAyxPredRAyxyxfy=GfPredRAyu=v
30 29 exlimivv ghxgugf|xfFnxxAyxPredRAyxyxfy=GfPredRAyxhvhf|xfFnxxAyxPredRAyxyxfy=GfPredRAyu=v
31 25 30 sylbi xFuxFvu=v
32 31 ax-gen vxFuxFvu=v
33 32 gen2 xuvxFuxFvu=v
34 dffun2 FunFRelFxuvxFuxFvu=v
35 4 33 34 mpbir2an FunF