Metamath Proof Explorer


Theorem wfrlem12OLD

Description: Lemma for well-ordered recursion. Here, we compute the value of the recursive definition generator. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfrfunOLD.1 RWeA
wfrfunOLD.2 RSeA
wfrfunOLD.3 F=wrecsRAG
Assertion wfrlem12OLD ydomFFy=GFPredRAy

Proof

Step Hyp Ref Expression
1 wfrfunOLD.1 RWeA
2 wfrfunOLD.2 RSeA
3 wfrfunOLD.3 F=wrecsRAG
4 vex yV
5 4 eldm2 ydomFzyzF
6 dfwrecsOLD wrecsRAG=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
7 3 6 eqtri F=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
8 7 eleq2i yzFyzf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
9 eluniab yzf|xfFnxxAyxPredRAyxyxfy=GfPredRAyfyzfxfFnxxAyxPredRAyxyxfy=GfPredRAy
10 8 9 bitri yzFfyzfxfFnxxAyxPredRAyxyxfy=GfPredRAy
11 abid ff|xfFnxxAyxPredRAyxyxfy=GfPredRAyxfFnxxAyxPredRAyxyxfy=GfPredRAy
12 elssuni ff|xfFnxxAyxPredRAyxyxfy=GfPredRAyff|xfFnxxAyxPredRAyxyxfy=GfPredRAy
13 12 7 sseqtrrdi ff|xfFnxxAyxPredRAyxyxfy=GfPredRAyfF
14 11 13 sylbir xfFnxxAyxPredRAyxyxfy=GfPredRAyfF
15 fnop fFnxyzfyx
16 15 ex fFnxyzfyx
17 rsp yxfy=GfPredRAyyxfy=GfPredRAy
18 17 impcom yxyxfy=GfPredRAyfy=GfPredRAy
19 rsp yxPredRAyxyxPredRAyx
20 fndm fFnxdomf=x
21 20 sseq2d fFnxPredRAydomfPredRAyx
22 20 eleq2d fFnxydomfyx
23 21 22 anbi12d fFnxPredRAydomfydomfPredRAyxyx
24 23 biimprd fFnxPredRAyxyxPredRAydomfydomf
25 24 expd fFnxPredRAyxyxPredRAydomfydomf
26 25 impcom PredRAyxfFnxyxPredRAydomfydomf
27 1 2 3 wfrfunOLD FunF
28 funssfv FunFfFydomfFy=fy
29 28 3adant3l FunFfFPredRAydomfydomfFy=fy
30 fun2ssres FunFfFPredRAydomfFPredRAy=fPredRAy
31 30 3adant3r FunFfFPredRAydomfydomfFPredRAy=fPredRAy
32 31 fveq2d FunFfFPredRAydomfydomfGFPredRAy=GfPredRAy
33 29 32 eqeq12d FunFfFPredRAydomfydomfFy=GFPredRAyfy=GfPredRAy
34 33 biimprd FunFfFPredRAydomfydomffy=GfPredRAyFy=GFPredRAy
35 27 34 mp3an1 fFPredRAydomfydomffy=GfPredRAyFy=GFPredRAy
36 35 expcom PredRAydomfydomffFfy=GfPredRAyFy=GFPredRAy
37 36 com23 PredRAydomfydomffy=GfPredRAyfFFy=GFPredRAy
38 26 37 syl6com yxPredRAyxfFnxfy=GfPredRAyfFFy=GFPredRAy
39 38 expd yxPredRAyxfFnxfy=GfPredRAyfFFy=GFPredRAy
40 39 com34 yxPredRAyxfy=GfPredRAyfFnxfFFy=GFPredRAy
41 19 40 sylcom yxPredRAyxyxfy=GfPredRAyfFnxfFFy=GFPredRAy
42 41 adantl xAyxPredRAyxyxfy=GfPredRAyfFnxfFFy=GFPredRAy
43 42 com14 fFnxyxfy=GfPredRAyxAyxPredRAyxfFFy=GFPredRAy
44 18 43 syl7 fFnxyxyxyxfy=GfPredRAyxAyxPredRAyxfFFy=GFPredRAy
45 44 exp4a fFnxyxyxyxfy=GfPredRAyxAyxPredRAyxfFFy=GFPredRAy
46 45 pm2.43d fFnxyxyxfy=GfPredRAyxAyxPredRAyxfFFy=GFPredRAy
47 46 com34 fFnxyxxAyxPredRAyxyxfy=GfPredRAyfFFy=GFPredRAy
48 16 47 syldc yzffFnxxAyxPredRAyxyxfy=GfPredRAyfFFy=GFPredRAy
49 48 3impd yzffFnxxAyxPredRAyxyxfy=GfPredRAyfFFy=GFPredRAy
50 49 exlimdv yzfxfFnxxAyxPredRAyxyxfy=GfPredRAyfFFy=GFPredRAy
51 14 50 mpdi yzfxfFnxxAyxPredRAyxyxfy=GfPredRAyFy=GFPredRAy
52 51 imp yzfxfFnxxAyxPredRAyxyxfy=GfPredRAyFy=GFPredRAy
53 52 exlimiv fyzfxfFnxxAyxPredRAyxyxfy=GfPredRAyFy=GFPredRAy
54 10 53 sylbi yzFFy=GFPredRAy
55 54 exlimiv zyzFFy=GFPredRAy
56 5 55 sylbi ydomFFy=GFPredRAy