Step |
Hyp |
Ref |
Expression |
1 |
|
wfrfunOLD.1 |
|
2 |
|
wfrfunOLD.2 |
|
3 |
|
wfrfunOLD.3 |
|
4 |
|
vex |
|
5 |
4
|
eldm2 |
|
6 |
|
dfwrecsOLD |
|
7 |
3 6
|
eqtri |
|
8 |
7
|
eleq2i |
|
9 |
|
eluniab |
|
10 |
8 9
|
bitri |
|
11 |
|
abid |
|
12 |
|
elssuni |
|
13 |
12 7
|
sseqtrrdi |
|
14 |
11 13
|
sylbir |
|
15 |
|
fnop |
|
16 |
15
|
ex |
|
17 |
|
rsp |
|
18 |
17
|
impcom |
|
19 |
|
rsp |
|
20 |
|
fndm |
|
21 |
20
|
sseq2d |
|
22 |
20
|
eleq2d |
|
23 |
21 22
|
anbi12d |
|
24 |
23
|
biimprd |
|
25 |
24
|
expd |
|
26 |
25
|
impcom |
|
27 |
1 2 3
|
wfrfunOLD |
|
28 |
|
funssfv |
|
29 |
28
|
3adant3l |
|
30 |
|
fun2ssres |
|
31 |
30
|
3adant3r |
|
32 |
31
|
fveq2d |
|
33 |
29 32
|
eqeq12d |
|
34 |
33
|
biimprd |
|
35 |
27 34
|
mp3an1 |
|
36 |
35
|
expcom |
|
37 |
36
|
com23 |
|
38 |
26 37
|
syl6com |
|
39 |
38
|
expd |
|
40 |
39
|
com34 |
|
41 |
19 40
|
sylcom |
|
42 |
41
|
adantl |
|
43 |
42
|
com14 |
|
44 |
18 43
|
syl7 |
|
45 |
44
|
exp4a |
|
46 |
45
|
pm2.43d |
|
47 |
46
|
com34 |
|
48 |
16 47
|
syldc |
|
49 |
48
|
3impd |
|
50 |
49
|
exlimdv |
|
51 |
14 50
|
mpdi |
|
52 |
51
|
imp |
|
53 |
52
|
exlimiv |
|
54 |
10 53
|
sylbi |
|
55 |
54
|
exlimiv |
|
56 |
5 55
|
sylbi |
|