Description: Lemma for well-ordered recursion. Here, we compute the value of the recursive definition generator. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfrfunOLD.1 | |
|
wfrfunOLD.2 | |
||
wfrfunOLD.3 | |
||
Assertion | wfrlem12OLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrfunOLD.1 | |
|
2 | wfrfunOLD.2 | |
|
3 | wfrfunOLD.3 | |
|
4 | vex | |
|
5 | 4 | eldm2 | |
6 | dfwrecsOLD | |
|
7 | 3 6 | eqtri | |
8 | 7 | eleq2i | |
9 | eluniab | |
|
10 | 8 9 | bitri | |
11 | abid | |
|
12 | elssuni | |
|
13 | 12 7 | sseqtrrdi | |
14 | 11 13 | sylbir | |
15 | fnop | |
|
16 | 15 | ex | |
17 | rsp | |
|
18 | 17 | impcom | |
19 | rsp | |
|
20 | fndm | |
|
21 | 20 | sseq2d | |
22 | 20 | eleq2d | |
23 | 21 22 | anbi12d | |
24 | 23 | biimprd | |
25 | 24 | expd | |
26 | 25 | impcom | |
27 | 1 2 3 | wfrfunOLD | |
28 | funssfv | |
|
29 | 28 | 3adant3l | |
30 | fun2ssres | |
|
31 | 30 | 3adant3r | |
32 | 31 | fveq2d | |
33 | 29 32 | eqeq12d | |
34 | 33 | biimprd | |
35 | 27 34 | mp3an1 | |
36 | 35 | expcom | |
37 | 36 | com23 | |
38 | 26 37 | syl6com | |
39 | 38 | expd | |
40 | 39 | com34 | |
41 | 19 40 | sylcom | |
42 | 41 | adantl | |
43 | 42 | com14 | |
44 | 18 43 | syl7 | |
45 | 44 | exp4a | |
46 | 45 | pm2.43d | |
47 | 46 | com34 | |
48 | 16 47 | syldc | |
49 | 48 | 3impd | |
50 | 49 | exlimdv | |
51 | 14 50 | mpdi | |
52 | 51 | imp | |
53 | 52 | exlimiv | |
54 | 10 53 | sylbi | |
55 | 54 | exlimiv | |
56 | 5 55 | sylbi | |