Metamath Proof Explorer


Theorem wfrlem13OLD

Description: Lemma for well-ordered recursion. From here through wfrlem16OLD , we aim to prove that dom F = A . We do this by supposing that there is an element z of A that is not in dom F . We then define C by extending dom F with the appropriate value at z . We then show that z cannot be an R minimal element of ( A \ dom F ) , meaning that ( A \ dom F ) must be empty, so dom F = A . Here, we show that C is a function extending the domain of F by one. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfrlem13OLD.1 RWeA
wfrlem13OLD.2 RSeA
wfrlem13OLD.3 F=wrecsRAG
wfrlem13OLD.4 C=FzGFPredRAz
Assertion wfrlem13OLD zAdomFCFndomFz

Proof

Step Hyp Ref Expression
1 wfrlem13OLD.1 RWeA
2 wfrlem13OLD.2 RSeA
3 wfrlem13OLD.3 F=wrecsRAG
4 wfrlem13OLD.4 C=FzGFPredRAz
5 1 2 3 wfrfunOLD FunF
6 vex zV
7 fvex GFPredRAzV
8 6 7 funsn FunzGFPredRAz
9 5 8 pm3.2i FunFFunzGFPredRAz
10 7 dmsnop domzGFPredRAz=z
11 10 ineq2i domFdomzGFPredRAz=domFz
12 eldifn zAdomF¬zdomF
13 disjsn domFz=¬zdomF
14 12 13 sylibr zAdomFdomFz=
15 11 14 eqtrid zAdomFdomFdomzGFPredRAz=
16 funun FunFFunzGFPredRAzdomFdomzGFPredRAz=FunFzGFPredRAz
17 9 15 16 sylancr zAdomFFunFzGFPredRAz
18 dmun domFzGFPredRAz=domFdomzGFPredRAz
19 10 uneq2i domFdomzGFPredRAz=domFz
20 18 19 eqtri domFzGFPredRAz=domFz
21 4 fneq1i CFndomFzFzGFPredRAzFndomFz
22 df-fn FzGFPredRAzFndomFzFunFzGFPredRAzdomFzGFPredRAz=domFz
23 21 22 bitri CFndomFzFunFzGFPredRAzdomFzGFPredRAz=domFz
24 17 20 23 sylanblrc zAdomFCFndomFz