| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfrlem13OLD.1 |
|- R We A |
| 2 |
|
wfrlem13OLD.2 |
|- R Se A |
| 3 |
|
wfrlem13OLD.3 |
|- F = wrecs ( R , A , G ) |
| 4 |
|
wfrlem13OLD.4 |
|- C = ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
| 5 |
1 2 3
|
wfrfunOLD |
|- Fun F |
| 6 |
|
vex |
|- z e. _V |
| 7 |
|
fvex |
|- ( G ` ( F |` Pred ( R , A , z ) ) ) e. _V |
| 8 |
6 7
|
funsn |
|- Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |
| 9 |
5 8
|
pm3.2i |
|- ( Fun F /\ Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
| 10 |
7
|
dmsnop |
|- dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } = { z } |
| 11 |
10
|
ineq2i |
|- ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F i^i { z } ) |
| 12 |
|
eldifn |
|- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
| 13 |
|
disjsn |
|- ( ( dom F i^i { z } ) = (/) <-> -. z e. dom F ) |
| 14 |
12 13
|
sylibr |
|- ( z e. ( A \ dom F ) -> ( dom F i^i { z } ) = (/) ) |
| 15 |
11 14
|
eqtrid |
|- ( z e. ( A \ dom F ) -> ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = (/) ) |
| 16 |
|
funun |
|- ( ( ( Fun F /\ Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = (/) ) -> Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) ) |
| 17 |
9 15 16
|
sylancr |
|- ( z e. ( A \ dom F ) -> Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) ) |
| 18 |
|
dmun |
|- dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
| 19 |
10
|
uneq2i |
|- ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) |
| 20 |
18 19
|
eqtri |
|- dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) |
| 21 |
4
|
fneq1i |
|- ( C Fn ( dom F u. { z } ) <-> ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( dom F u. { z } ) ) |
| 22 |
|
df-fn |
|- ( ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( dom F u. { z } ) <-> ( Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) ) ) |
| 23 |
21 22
|
bitri |
|- ( C Fn ( dom F u. { z } ) <-> ( Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) ) ) |
| 24 |
17 20 23
|
sylanblrc |
|- ( z e. ( A \ dom F ) -> C Fn ( dom F u. { z } ) ) |