Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem13OLD.1 |
|- R We A |
2 |
|
wfrlem13OLD.2 |
|- R Se A |
3 |
|
wfrlem13OLD.3 |
|- F = wrecs ( R , A , G ) |
4 |
|
wfrlem13OLD.4 |
|- C = ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
5 |
1 2 3 4
|
wfrlem13OLD |
|- ( z e. ( A \ dom F ) -> C Fn ( dom F u. { z } ) ) |
6 |
|
elun |
|- ( y e. ( dom F u. { z } ) <-> ( y e. dom F \/ y e. { z } ) ) |
7 |
|
velsn |
|- ( y e. { z } <-> y = z ) |
8 |
7
|
orbi2i |
|- ( ( y e. dom F \/ y e. { z } ) <-> ( y e. dom F \/ y = z ) ) |
9 |
6 8
|
bitri |
|- ( y e. ( dom F u. { z } ) <-> ( y e. dom F \/ y = z ) ) |
10 |
1 2 3
|
wfrlem12OLD |
|- ( y e. dom F -> ( F ` y ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) |
11 |
|
fnfun |
|- ( C Fn ( dom F u. { z } ) -> Fun C ) |
12 |
|
ssun1 |
|- F C_ ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
13 |
12 4
|
sseqtrri |
|- F C_ C |
14 |
|
funssfv |
|- ( ( Fun C /\ F C_ C /\ y e. dom F ) -> ( C ` y ) = ( F ` y ) ) |
15 |
3
|
wfrdmclOLD |
|- ( y e. dom F -> Pred ( R , A , y ) C_ dom F ) |
16 |
|
fun2ssres |
|- ( ( Fun C /\ F C_ C /\ Pred ( R , A , y ) C_ dom F ) -> ( C |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , y ) ) ) |
17 |
15 16
|
syl3an3 |
|- ( ( Fun C /\ F C_ C /\ y e. dom F ) -> ( C |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , y ) ) ) |
18 |
17
|
fveq2d |
|- ( ( Fun C /\ F C_ C /\ y e. dom F ) -> ( G ` ( C |` Pred ( R , A , y ) ) ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) |
19 |
14 18
|
eqeq12d |
|- ( ( Fun C /\ F C_ C /\ y e. dom F ) -> ( ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) <-> ( F ` y ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) ) |
20 |
13 19
|
mp3an2 |
|- ( ( Fun C /\ y e. dom F ) -> ( ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) <-> ( F ` y ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) ) |
21 |
11 20
|
sylan |
|- ( ( C Fn ( dom F u. { z } ) /\ y e. dom F ) -> ( ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) <-> ( F ` y ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) ) |
22 |
10 21
|
syl5ibr |
|- ( ( C Fn ( dom F u. { z } ) /\ y e. dom F ) -> ( y e. dom F -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
23 |
22
|
ex |
|- ( C Fn ( dom F u. { z } ) -> ( y e. dom F -> ( y e. dom F -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) ) |
24 |
23
|
pm2.43d |
|- ( C Fn ( dom F u. { z } ) -> ( y e. dom F -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
25 |
|
vsnid |
|- z e. { z } |
26 |
|
elun2 |
|- ( z e. { z } -> z e. ( dom F u. { z } ) ) |
27 |
25 26
|
ax-mp |
|- z e. ( dom F u. { z } ) |
28 |
4
|
reseq1i |
|- ( C |` Pred ( R , A , z ) ) = ( ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) |
29 |
|
resundir |
|- ( ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) = ( ( F |` Pred ( R , A , z ) ) u. ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) |
30 |
|
wefr |
|- ( R We A -> R Fr A ) |
31 |
1 30
|
ax-mp |
|- R Fr A |
32 |
|
predfrirr |
|- ( R Fr A -> -. z e. Pred ( R , A , z ) ) |
33 |
|
ressnop0 |
|- ( -. z e. Pred ( R , A , z ) -> ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) ) |
34 |
31 32 33
|
mp2b |
|- ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) |
35 |
34
|
uneq2i |
|- ( ( F |` Pred ( R , A , z ) ) u. ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( ( F |` Pred ( R , A , z ) ) u. (/) ) |
36 |
|
un0 |
|- ( ( F |` Pred ( R , A , z ) ) u. (/) ) = ( F |` Pred ( R , A , z ) ) |
37 |
35 36
|
eqtri |
|- ( ( F |` Pred ( R , A , z ) ) u. ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( F |` Pred ( R , A , z ) ) |
38 |
28 29 37
|
3eqtri |
|- ( C |` Pred ( R , A , z ) ) = ( F |` Pred ( R , A , z ) ) |
39 |
38
|
fveq2i |
|- ( G ` ( C |` Pred ( R , A , z ) ) ) = ( G ` ( F |` Pred ( R , A , z ) ) ) |
40 |
39
|
opeq2i |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. = <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. |
41 |
|
opex |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. _V |
42 |
41
|
elsn |
|- ( <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } <-> <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. = <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. ) |
43 |
40 42
|
mpbir |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |
44 |
|
elun2 |
|- ( <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } -> <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) ) |
45 |
43 44
|
ax-mp |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
46 |
45 4
|
eleqtrri |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. C |
47 |
|
fnopfvb |
|- ( ( C Fn ( dom F u. { z } ) /\ z e. ( dom F u. { z } ) ) -> ( ( C ` z ) = ( G ` ( C |` Pred ( R , A , z ) ) ) <-> <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. C ) ) |
48 |
46 47
|
mpbiri |
|- ( ( C Fn ( dom F u. { z } ) /\ z e. ( dom F u. { z } ) ) -> ( C ` z ) = ( G ` ( C |` Pred ( R , A , z ) ) ) ) |
49 |
27 48
|
mpan2 |
|- ( C Fn ( dom F u. { z } ) -> ( C ` z ) = ( G ` ( C |` Pred ( R , A , z ) ) ) ) |
50 |
|
fveq2 |
|- ( y = z -> ( C ` y ) = ( C ` z ) ) |
51 |
|
predeq3 |
|- ( y = z -> Pred ( R , A , y ) = Pred ( R , A , z ) ) |
52 |
51
|
reseq2d |
|- ( y = z -> ( C |` Pred ( R , A , y ) ) = ( C |` Pred ( R , A , z ) ) ) |
53 |
52
|
fveq2d |
|- ( y = z -> ( G ` ( C |` Pred ( R , A , y ) ) ) = ( G ` ( C |` Pred ( R , A , z ) ) ) ) |
54 |
50 53
|
eqeq12d |
|- ( y = z -> ( ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) <-> ( C ` z ) = ( G ` ( C |` Pred ( R , A , z ) ) ) ) ) |
55 |
49 54
|
syl5ibrcom |
|- ( C Fn ( dom F u. { z } ) -> ( y = z -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
56 |
24 55
|
jaod |
|- ( C Fn ( dom F u. { z } ) -> ( ( y e. dom F \/ y = z ) -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
57 |
9 56
|
syl5bi |
|- ( C Fn ( dom F u. { z } ) -> ( y e. ( dom F u. { z } ) -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
58 |
5 57
|
syl |
|- ( z e. ( A \ dom F ) -> ( y e. ( dom F u. { z } ) -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |