Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem13OLD.1 |
⊢ 𝑅 We 𝐴 |
2 |
|
wfrlem13OLD.2 |
⊢ 𝑅 Se 𝐴 |
3 |
|
wfrlem13OLD.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
4 |
|
wfrlem13OLD.4 |
⊢ 𝐶 = ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
5 |
1 2 3 4
|
wfrlem13OLD |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ) |
6 |
|
elun |
⊢ ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ { 𝑧 } ) ) |
7 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) |
8 |
7
|
orbi2i |
⊢ ( ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧 ) ) |
9 |
6 8
|
bitri |
⊢ ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧 ) ) |
10 |
1 2 3
|
wfrlem12OLD |
⊢ ( 𝑦 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
11 |
|
fnfun |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → Fun 𝐶 ) |
12 |
|
ssun1 |
⊢ 𝐹 ⊆ ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
13 |
12 4
|
sseqtrri |
⊢ 𝐹 ⊆ 𝐶 |
14 |
|
funssfv |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
15 |
3
|
wfrdmclOLD |
⊢ ( 𝑦 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝐹 ) |
16 |
|
fun2ssres |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝐹 ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
17 |
15 16
|
syl3an3 |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
18 |
17
|
fveq2d |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
19 |
14 18
|
eqeq12d |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
20 |
13 19
|
mp3an2 |
⊢ ( ( Fun 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
21 |
11 20
|
sylan |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
22 |
10 21
|
syl5ibr |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑦 ∈ dom 𝐹 → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
23 |
22
|
ex |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 ∈ dom 𝐹 → ( 𝑦 ∈ dom 𝐹 → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
24 |
23
|
pm2.43d |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 ∈ dom 𝐹 → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
25 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
26 |
|
elun2 |
⊢ ( 𝑧 ∈ { 𝑧 } → 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ) |
27 |
25 26
|
ax-mp |
⊢ 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) |
28 |
4
|
reseq1i |
⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
29 |
|
resundir |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
30 |
|
wefr |
⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) |
31 |
1 30
|
ax-mp |
⊢ 𝑅 Fr 𝐴 |
32 |
|
predfrirr |
⊢ ( 𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
33 |
|
ressnop0 |
⊢ ( ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ ) |
34 |
31 32 33
|
mp2b |
⊢ ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ |
35 |
34
|
uneq2i |
⊢ ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) |
36 |
|
un0 |
⊢ ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
37 |
35 36
|
eqtri |
⊢ ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
38 |
28 29 37
|
3eqtri |
⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
39 |
38
|
fveq2i |
⊢ ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
40 |
39
|
opeq2i |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 = 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 |
41 |
|
opex |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ V |
42 |
41
|
elsn |
⊢ ( 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↔ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 = 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ) |
43 |
40 42
|
mpbir |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } |
44 |
|
elun2 |
⊢ ( 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } → 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ) |
45 |
43 44
|
ax-mp |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
46 |
45 4
|
eleqtrri |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ 𝐶 |
47 |
|
fnopfvb |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ) → ( ( 𝐶 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ↔ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ 𝐶 ) ) |
48 |
46 47
|
mpbiri |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
49 |
27 48
|
mpan2 |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
50 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐶 ‘ 𝑦 ) = ( 𝐶 ‘ 𝑧 ) ) |
51 |
|
predeq3 |
⊢ ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
52 |
51
|
reseq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
54 |
50 53
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐶 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
55 |
49 54
|
syl5ibrcom |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 = 𝑧 → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
56 |
24 55
|
jaod |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧 ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
57 |
9 56
|
syl5bi |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
58 |
5 57
|
syl |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |