| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfrlem13OLD.1 |
⊢ 𝑅 We 𝐴 |
| 2 |
|
wfrlem13OLD.2 |
⊢ 𝑅 Se 𝐴 |
| 3 |
|
wfrlem13OLD.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
| 4 |
|
wfrlem13OLD.4 |
⊢ 𝐶 = ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 5 |
1 2 3 4
|
wfrlem13OLD |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ) |
| 6 |
|
elun |
⊢ ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ { 𝑧 } ) ) |
| 7 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) |
| 8 |
7
|
orbi2i |
⊢ ( ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧 ) ) |
| 9 |
6 8
|
bitri |
⊢ ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧 ) ) |
| 10 |
1 2 3
|
wfrlem12OLD |
⊢ ( 𝑦 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 11 |
|
fnfun |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → Fun 𝐶 ) |
| 12 |
|
ssun1 |
⊢ 𝐹 ⊆ ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 13 |
12 4
|
sseqtrri |
⊢ 𝐹 ⊆ 𝐶 |
| 14 |
|
funssfv |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 15 |
3
|
wfrdmclOLD |
⊢ ( 𝑦 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝐹 ) |
| 16 |
|
fun2ssres |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝐹 ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
| 17 |
15 16
|
syl3an3 |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
| 18 |
17
|
fveq2d |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 19 |
14 18
|
eqeq12d |
⊢ ( ( Fun 𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 20 |
13 19
|
mp3an2 |
⊢ ( ( Fun 𝐶 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 21 |
11 20
|
sylan |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 22 |
10 21
|
imbitrrid |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑦 ∈ dom 𝐹 → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 23 |
22
|
ex |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 ∈ dom 𝐹 → ( 𝑦 ∈ dom 𝐹 → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
| 24 |
23
|
pm2.43d |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 ∈ dom 𝐹 → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 25 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
| 26 |
|
elun2 |
⊢ ( 𝑧 ∈ { 𝑧 } → 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ) |
| 27 |
25 26
|
ax-mp |
⊢ 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) |
| 28 |
4
|
reseq1i |
⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 29 |
|
resundir |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 30 |
|
wefr |
⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) |
| 31 |
1 30
|
ax-mp |
⊢ 𝑅 Fr 𝐴 |
| 32 |
|
predfrirr |
⊢ ( 𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 33 |
|
ressnop0 |
⊢ ( ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ ) |
| 34 |
31 32 33
|
mp2b |
⊢ ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ |
| 35 |
34
|
uneq2i |
⊢ ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) |
| 36 |
|
un0 |
⊢ ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 37 |
35 36
|
eqtri |
⊢ ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 38 |
28 29 37
|
3eqtri |
⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 39 |
38
|
fveq2i |
⊢ ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 40 |
39
|
opeq2i |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 = 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 |
| 41 |
|
opex |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ V |
| 42 |
41
|
elsn |
⊢ ( 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↔ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 = 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ) |
| 43 |
40 42
|
mpbir |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } |
| 44 |
|
elun2 |
⊢ ( 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } → 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ) |
| 45 |
43 44
|
ax-mp |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 46 |
45 4
|
eleqtrri |
⊢ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ 𝐶 |
| 47 |
|
fnopfvb |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ) → ( ( 𝐶 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ↔ 〈 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 ∈ 𝐶 ) ) |
| 48 |
46 47
|
mpbiri |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 49 |
27 48
|
mpan2 |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐶 ‘ 𝑦 ) = ( 𝐶 ‘ 𝑧 ) ) |
| 51 |
|
predeq3 |
⊢ ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 52 |
51
|
reseq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 53 |
52
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 54 |
50 53
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐶 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 55 |
49 54
|
syl5ibrcom |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 = 𝑧 → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 56 |
24 55
|
jaod |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧 ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 57 |
9 56
|
biimtrid |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 58 |
5 57
|
syl |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |