| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfrlem13OLD.1 |
⊢ 𝑅 We 𝐴 |
| 2 |
|
wfrlem13OLD.2 |
⊢ 𝑅 Se 𝐴 |
| 3 |
|
wfrlem13OLD.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
| 4 |
|
wfrlem13OLD.4 |
⊢ 𝐶 = ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 5 |
1 2 3 4
|
wfrlem13OLD |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ) |
| 7 |
1 3
|
wfrlem10OLD |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) = dom 𝐹 ) |
| 8 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝑧 ∈ 𝐴 ) |
| 9 |
|
setlikespec |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
| 10 |
8 2 9
|
sylancl |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
| 12 |
7 11
|
eqeltrrd |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → dom 𝐹 ∈ V ) |
| 13 |
|
snex |
⊢ { 𝑧 } ∈ V |
| 14 |
|
unexg |
⊢ ( ( dom 𝐹 ∈ V ∧ { 𝑧 } ∈ V ) → ( dom 𝐹 ∪ { 𝑧 } ) ∈ V ) |
| 15 |
13 14
|
mpan2 |
⊢ ( dom 𝐹 ∈ V → ( dom 𝐹 ∪ { 𝑧 } ) ∈ V ) |
| 16 |
|
fnex |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ ( dom 𝐹 ∪ { 𝑧 } ) ∈ V ) → 𝐶 ∈ V ) |
| 17 |
15 16
|
sylan2 |
⊢ ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ dom 𝐹 ∈ V ) → 𝐶 ∈ V ) |
| 18 |
6 12 17
|
syl2anc |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝐶 ∈ V ) |
| 19 |
12 13 14
|
sylancl |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( dom 𝐹 ∪ { 𝑧 } ) ∈ V ) |
| 20 |
3
|
wfrdmssOLD |
⊢ dom 𝐹 ⊆ 𝐴 |
| 21 |
8
|
snssd |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → { 𝑧 } ⊆ 𝐴 ) |
| 22 |
|
unss |
⊢ ( ( dom 𝐹 ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ ( dom 𝐹 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 23 |
22
|
biimpi |
⊢ ( ( dom 𝐹 ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) → ( dom 𝐹 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 24 |
20 21 23
|
sylancr |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( dom 𝐹 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( dom 𝐹 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 26 |
|
elun |
⊢ ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ { 𝑧 } ) ) |
| 27 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) |
| 28 |
27
|
orbi2i |
⊢ ( ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧 ) ) |
| 29 |
26 28
|
bitri |
⊢ ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧 ) ) |
| 30 |
3
|
wfrdmclOLD |
⊢ ( 𝑦 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝐹 ) |
| 31 |
|
ssun3 |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) |
| 32 |
30 31
|
syl |
⊢ ( 𝑦 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) |
| 33 |
32
|
a1i |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( 𝑦 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 34 |
|
ssun1 |
⊢ dom 𝐹 ⊆ ( dom 𝐹 ∪ { 𝑧 } ) |
| 35 |
7 34
|
eqsstrdi |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) |
| 36 |
|
predeq3 |
⊢ ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 37 |
36
|
sseq1d |
⊢ ( 𝑦 = 𝑧 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ↔ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 38 |
35 37
|
syl5ibrcom |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 39 |
33 38
|
jaod |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( ( 𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 40 |
29 39
|
biimtrid |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 41 |
40
|
ralrimiv |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) |
| 42 |
25 41
|
jca |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( ( dom 𝐹 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 43 |
1 2 3 4
|
wfrlem14OLD |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 44 |
43
|
ralrimiv |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 46 |
6 42 45
|
3jca |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ ( ( dom 𝐹 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ∧ ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 47 |
|
fneq2 |
⊢ ( 𝑥 = ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶 Fn 𝑥 ↔ 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 48 |
|
sseq1 |
⊢ ( 𝑥 = ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑥 ⊆ 𝐴 ↔ ( dom 𝐹 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) |
| 49 |
|
sseq2 |
⊢ ( 𝑥 = ( dom 𝐹 ∪ { 𝑧 } ) → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 50 |
49
|
raleqbi1dv |
⊢ ( 𝑥 = ( dom 𝐹 ∪ { 𝑧 } ) → ( ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 51 |
48 50
|
anbi12d |
⊢ ( 𝑥 = ( dom 𝐹 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ↔ ( ( dom 𝐹 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ) ) |
| 52 |
|
raleq |
⊢ ( 𝑥 = ( dom 𝐹 ∪ { 𝑧 } ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 53 |
47 51 52
|
3anbi123d |
⊢ ( 𝑥 = ( dom 𝐹 ∪ { 𝑧 } ) → ( ( 𝐶 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ ( ( dom 𝐹 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ ( dom 𝐹 ∪ { 𝑧 } ) ) ∧ ∀ 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
| 54 |
19 46 53
|
spcedv |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ∃ 𝑥 ( 𝐶 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 55 |
|
fneq1 |
⊢ ( 𝑓 = 𝐶 → ( 𝑓 Fn 𝑥 ↔ 𝐶 Fn 𝑥 ) ) |
| 56 |
|
fveq1 |
⊢ ( 𝑓 = 𝐶 → ( 𝑓 ‘ 𝑦 ) = ( 𝐶 ‘ 𝑦 ) ) |
| 57 |
|
reseq1 |
⊢ ( 𝑓 = 𝐶 → ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
| 58 |
57
|
fveq2d |
⊢ ( 𝑓 = 𝐶 → ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 59 |
56 58
|
eqeq12d |
⊢ ( 𝑓 = 𝐶 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 60 |
59
|
ralbidv |
⊢ ( 𝑓 = 𝐶 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 61 |
55 60
|
3anbi13d |
⊢ ( 𝑓 = 𝐶 → ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝐶 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
| 62 |
61
|
exbidv |
⊢ ( 𝑓 = 𝐶 → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑥 ( 𝐶 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐶 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
| 63 |
18 54 62
|
elabd |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝐶 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |