Metamath Proof Explorer


Theorem wfrlem3OLDa

Description: Lemma for well-ordered recursion. Show membership in the class of acceptable functions. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 31-Jul-2020)

Ref Expression
Hypotheses wfrlem1OLD.1 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
wfrlem3OLDa.2 G V
Assertion wfrlem3OLDa G B z G Fn z z A w z Pred R A w z w z G w = F G Pred R A w

Proof

Step Hyp Ref Expression
1 wfrlem1OLD.1 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
2 wfrlem3OLDa.2 G V
3 fneq1 g = G g Fn z G Fn z
4 fveq1 g = G g w = G w
5 reseq1 g = G g Pred R A w = G Pred R A w
6 5 fveq2d g = G F g Pred R A w = F G Pred R A w
7 4 6 eqeq12d g = G g w = F g Pred R A w G w = F G Pred R A w
8 7 ralbidv g = G w z g w = F g Pred R A w w z G w = F G Pred R A w
9 3 8 3anbi13d g = G g Fn z z A w z Pred R A w z w z g w = F g Pred R A w G Fn z z A w z Pred R A w z w z G w = F G Pred R A w
10 9 exbidv g = G z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w z G Fn z z A w z Pred R A w z w z G w = F G Pred R A w
11 1 wfrlem1OLD B = g | z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w
12 2 10 11 elab2 G B z G Fn z z A w z Pred R A w z w z G w = F G Pred R A w