Metamath Proof Explorer


Theorem wlkp1lem5

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v V = Vtx G
wlkp1.i I = iEdg G
wlkp1.f φ Fun I
wlkp1.a φ I Fin
wlkp1.b φ B W
wlkp1.c φ C V
wlkp1.d φ ¬ B dom I
wlkp1.w φ F Walks G P
wlkp1.n N = F
wlkp1.e φ E Edg G
wlkp1.x φ P N C E
wlkp1.u φ iEdg S = I B E
wlkp1.h H = F N B
wlkp1.q Q = P N + 1 C
wlkp1.s φ Vtx S = V
Assertion wlkp1lem5 φ k 0 N Q k = P k

Proof

Step Hyp Ref Expression
1 wlkp1.v V = Vtx G
2 wlkp1.i I = iEdg G
3 wlkp1.f φ Fun I
4 wlkp1.a φ I Fin
5 wlkp1.b φ B W
6 wlkp1.c φ C V
7 wlkp1.d φ ¬ B dom I
8 wlkp1.w φ F Walks G P
9 wlkp1.n N = F
10 wlkp1.e φ E Edg G
11 wlkp1.x φ P N C E
12 wlkp1.u φ iEdg S = I B E
13 wlkp1.h H = F N B
14 wlkp1.q Q = P N + 1 C
15 wlkp1.s φ Vtx S = V
16 14 fveq1i Q k = P N + 1 C k
17 fzp1nel ¬ N + 1 0 N
18 eleq1 k = N + 1 k 0 N N + 1 0 N
19 18 notbid k = N + 1 ¬ k 0 N ¬ N + 1 0 N
20 19 eqcoms N + 1 = k ¬ k 0 N ¬ N + 1 0 N
21 17 20 mpbiri N + 1 = k ¬ k 0 N
22 21 a1i φ N + 1 = k ¬ k 0 N
23 22 con2d φ k 0 N ¬ N + 1 = k
24 23 imp φ k 0 N ¬ N + 1 = k
25 24 neqned φ k 0 N N + 1 k
26 fvunsn N + 1 k P N + 1 C k = P k
27 25 26 syl φ k 0 N P N + 1 C k = P k
28 16 27 eqtrid φ k 0 N Q k = P k
29 28 ralrimiva φ k 0 N Q k = P k