Metamath Proof Explorer


Theorem wrdl1s1

Description: A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018) (Proof shortened by AV, 14-Oct-2018)

Ref Expression
Assertion wrdl1s1 SVW=⟨“S”⟩WWordVW=1W0=S

Proof

Step Hyp Ref Expression
1 s1cl SV⟨“S”⟩WordV
2 s1len ⟨“S”⟩=1
3 2 a1i SV⟨“S”⟩=1
4 s1fv SV⟨“S”⟩0=S
5 1 3 4 3jca SV⟨“S”⟩WordV⟨“S”⟩=1⟨“S”⟩0=S
6 eleq1 W=⟨“S”⟩WWordV⟨“S”⟩WordV
7 fveqeq2 W=⟨“S”⟩W=1⟨“S”⟩=1
8 fveq1 W=⟨“S”⟩W0=⟨“S”⟩0
9 8 eqeq1d W=⟨“S”⟩W0=S⟨“S”⟩0=S
10 6 7 9 3anbi123d W=⟨“S”⟩WWordVW=1W0=S⟨“S”⟩WordV⟨“S”⟩=1⟨“S”⟩0=S
11 5 10 syl5ibrcom SVW=⟨“S”⟩WWordVW=1W0=S
12 eqs1 WWordVW=1W=⟨“W0”⟩
13 s1eq W0=S⟨“W0”⟩=⟨“S”⟩
14 13 eqeq2d W0=SW=⟨“W0”⟩W=⟨“S”⟩
15 12 14 syl5ibcom WWordVW=1W0=SW=⟨“S”⟩
16 15 3impia WWordVW=1W0=SW=⟨“S”⟩
17 11 16 impbid1 SVW=⟨“S”⟩WWordVW=1W0=S