Metamath Proof Explorer


Theorem wwlks

Description: The set of walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)

Ref Expression
Hypotheses wwlks.v V=VtxG
wwlks.e E=EdgG
Assertion wwlks WWalksG=wWordV|wi0..^w1wiwi+1E

Proof

Step Hyp Ref Expression
1 wwlks.v V=VtxG
2 wwlks.e E=EdgG
3 df-wwlks WWalks=gVwWordVtxg|wi0..^w1wiwi+1Edgg
4 fveq2 g=GVtxg=VtxG
5 4 1 eqtr4di g=GVtxg=V
6 wrdeq Vtxg=VWordVtxg=WordV
7 5 6 syl g=GWordVtxg=WordV
8 fveq2 g=GEdgg=EdgG
9 8 2 eqtr4di g=GEdgg=E
10 9 eleq2d g=Gwiwi+1Edggwiwi+1E
11 10 ralbidv g=Gi0..^w1wiwi+1Edggi0..^w1wiwi+1E
12 11 anbi2d g=Gwi0..^w1wiwi+1Edggwi0..^w1wiwi+1E
13 7 12 rabeqbidv g=GwWordVtxg|wi0..^w1wiwi+1Edgg=wWordV|wi0..^w1wiwi+1E
14 id GVGV
15 1 fvexi VV
16 15 a1i GVVV
17 wrdexg VVWordVV
18 rabexg WordVVwWordV|wi0..^w1wiwi+1EV
19 16 17 18 3syl GVwWordV|wi0..^w1wiwi+1EV
20 3 13 14 19 fvmptd3 GVWWalksG=wWordV|wi0..^w1wiwi+1E
21 fvprc ¬GVWWalksG=
22 fvprc ¬GVVtxG=
23 1 22 eqtrid ¬GVV=
24 wrdeq V=WordV=Word
25 23 24 syl ¬GVWordV=Word
26 25 eleq2d ¬GVwWordVwWord
27 0wrd0 wWordw=
28 26 27 bitrdi ¬GVwWordVw=
29 nne ¬ww=
30 29 biimpri w=¬w
31 30 intnanrd w=¬wi0..^w1wiwi+1E
32 28 31 syl6bi ¬GVwWordV¬wi0..^w1wiwi+1E
33 32 ralrimiv ¬GVwWordV¬wi0..^w1wiwi+1E
34 rabeq0 wWordV|wi0..^w1wiwi+1E=wWordV¬wi0..^w1wiwi+1E
35 33 34 sylibr ¬GVwWordV|wi0..^w1wiwi+1E=
36 21 35 eqtr4d ¬GVWWalksG=wWordV|wi0..^w1wiwi+1E
37 20 36 pm2.61i WWalksG=wWordV|wi0..^w1wiwi+1E