Metamath Proof Explorer


Theorem xdivmul

Description: Relationship between division and multiplication. (Contributed by Thierry Arnoux, 24-Dec-2016)

Ref Expression
Assertion xdivmul A*B*CC0A÷𝑒C=BC𝑒B=A

Proof

Step Hyp Ref Expression
1 xdivval A*CC0A÷𝑒C=ιx*|C𝑒x=A
2 1 3expb A*CC0A÷𝑒C=ιx*|C𝑒x=A
3 2 3adant2 A*B*CC0A÷𝑒C=ιx*|C𝑒x=A
4 3 eqeq1d A*B*CC0A÷𝑒C=Bιx*|C𝑒x=A=B
5 simp2 A*B*CC0B*
6 xreceu A*CC0∃!x*C𝑒x=A
7 6 3expb A*CC0∃!x*C𝑒x=A
8 7 3adant2 A*B*CC0∃!x*C𝑒x=A
9 oveq2 x=BC𝑒x=C𝑒B
10 9 eqeq1d x=BC𝑒x=AC𝑒B=A
11 10 riota2 B*∃!x*C𝑒x=AC𝑒B=Aιx*|C𝑒x=A=B
12 5 8 11 syl2anc A*B*CC0C𝑒B=Aιx*|C𝑒x=A=B
13 4 12 bitr4d A*B*CC0A÷𝑒C=BC𝑒B=A