Metamath Proof Explorer


Theorem xlenegcon2

Description: Extended real version of lenegcon2 . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Assertion xlenegcon2 A*B*ABBA

Proof

Step Hyp Ref Expression
1 xnegcl B*B*
2 xleneg A*B*ABBA
3 1 2 sylan2 A*B*ABBA
4 xnegneg B*B=B
5 4 breq1d B*BABA
6 5 adantl A*B*BABA
7 3 6 bitrd A*B*ABBA