Metamath Proof Explorer


Theorem xmulf

Description: The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xmulf 𝑒:*×**

Proof

Step Hyp Ref Expression
1 0xr 0*
2 1 a1i x*y*x=0y=00*
3 pnfxr +∞*
4 3 a1i x*y*¬x=0y=00<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞*
5 mnfxr −∞*
6 5 a1i x*y*¬x=0y=0¬0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞*
7 xmullem x*y*¬x=0y=0¬0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞¬0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞x
8 ancom x*y*y*x*
9 orcom x=0y=0y=0x=0
10 9 notbii ¬x=0y=0¬y=0x=0
11 8 10 anbi12i x*y*¬x=0y=0y*x*¬y=0x=0
12 orcom 0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞0<xy=+∞x<0y=−∞0<yx=+∞y<0x=−∞
13 12 notbii ¬0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞¬0<xy=+∞x<0y=−∞0<yx=+∞y<0x=−∞
14 11 13 anbi12i x*y*¬x=0y=0¬0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞y*x*¬y=0x=0¬0<xy=+∞x<0y=−∞0<yx=+∞y<0x=−∞
15 orcom 0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞0<xy=−∞x<0y=+∞0<yx=−∞y<0x=+∞
16 15 notbii ¬0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞¬0<xy=−∞x<0y=+∞0<yx=−∞y<0x=+∞
17 xmullem y*x*¬y=0x=0¬0<xy=+∞x<0y=−∞0<yx=+∞y<0x=−∞¬0<xy=−∞x<0y=+∞0<yx=−∞y<0x=+∞y
18 14 16 17 syl2anb x*y*¬x=0y=0¬0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞¬0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞y
19 7 18 remulcld x*y*¬x=0y=0¬0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞¬0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞xy
20 19 rexrd x*y*¬x=0y=0¬0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞¬0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞xy*
21 6 20 ifclda x*y*¬x=0y=0¬0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy*
22 4 21 ifclda x*y*¬x=0y=0if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy*
23 2 22 ifclda x*y*ifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy*
24 23 rgen2 x*y*ifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy*
25 df-xmul 𝑒=x*,y*ifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy
26 25 fmpo x*y*ifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy*𝑒:*×**
27 24 26 mpbi 𝑒:*×**