Metamath Proof Explorer


Theorem xnegcl

Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegcl A*A*

Proof

Step Hyp Ref Expression
1 elxr A*AA=+∞A=−∞
2 rexneg AA=A
3 renegcl AA
4 2 3 eqeltrd AA
5 4 rexrd AA*
6 xnegeq A=+∞A=+∞
7 xnegpnf +∞=−∞
8 mnfxr −∞*
9 7 8 eqeltri +∞*
10 6 9 eqeltrdi A=+∞A*
11 xnegeq A=−∞A=−∞
12 xnegmnf −∞=+∞
13 pnfxr +∞*
14 12 13 eqeltri −∞*
15 11 14 eqeltrdi A=−∞A*
16 5 10 15 3jaoi AA=+∞A=−∞A*
17 1 16 sylbi A*A*