Metamath Proof Explorer


Theorem xnn0lenn0nn0

Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021)

Ref Expression
Assertion xnn0lenn0nn0 M0*N0MNM0

Proof

Step Hyp Ref Expression
1 elxnn0 M0*M0M=+∞
2 2a1 M0N0MNM0
3 breq1 M=+∞MN+∞N
4 3 adantr M=+∞N0MN+∞N
5 nn0re N0N
6 5 rexrd N0N*
7 xgepnf N*+∞NN=+∞
8 6 7 syl N0+∞NN=+∞
9 pnfnre +∞
10 eleq1 N=+∞N0+∞0
11 nn0re +∞0+∞
12 pm2.24nel +∞+∞M0
13 11 12 syl +∞0+∞M0
14 10 13 syl6bi N=+∞N0+∞M0
15 14 com13 +∞N0N=+∞M0
16 9 15 ax-mp N0N=+∞M0
17 8 16 sylbid N0+∞NM0
18 17 adantl M=+∞N0+∞NM0
19 4 18 sylbid M=+∞N0MNM0
20 19 ex M=+∞N0MNM0
21 2 20 jaoi M0M=+∞N0MNM0
22 1 21 sylbi M0*N0MNM0
23 22 3imp M0*N0MNM0