Metamath Proof Explorer


Theorem xpcbas

Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017)

Ref Expression
Hypotheses xpcbas.t T=C×cD
xpcbas.x X=BaseC
xpcbas.y Y=BaseD
Assertion xpcbas X×Y=BaseT

Proof

Step Hyp Ref Expression
1 xpcbas.t T=C×cD
2 xpcbas.x X=BaseC
3 xpcbas.y Y=BaseD
4 eqid HomC=HomC
5 eqid HomD=HomD
6 eqid compC=compC
7 eqid compD=compD
8 simpl CVDVCV
9 simpr CVDVDV
10 eqidd CVDVX×Y=X×Y
11 eqidd CVDVuX×Y,vX×Y1stuHomC1stv×2nduHomD2ndv=uX×Y,vX×Y1stuHomC1stv×2nduHomD2ndv
12 eqidd CVDVxX×Y×X×Y,yX×Yg2ndxuX×Y,vX×Y1stuHomC1stv×2nduHomD2ndvy,fuX×Y,vX×Y1stuHomC1stv×2nduHomD2ndvx1stg1st1stx1st2ndxcompC1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf=xX×Y×X×Y,yX×Yg2ndxuX×Y,vX×Y1stuHomC1stv×2nduHomD2ndvy,fuX×Y,vX×Y1stuHomC1stv×2nduHomD2ndvx1stg1st1stx1st2ndxcompC1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
13 1 2 3 4 5 6 7 8 9 10 11 12 xpcval CVDVT=BasendxX×YHomndxuX×Y,vX×Y1stuHomC1stv×2nduHomD2ndvcompndxxX×Y×X×Y,yX×Yg2ndxuX×Y,vX×Y1stuHomC1stv×2nduHomD2ndvy,fuX×Y,vX×Y1stuHomC1stv×2nduHomD2ndvx1stg1st1stx1st2ndxcompC1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
14 2 fvexi XV
15 3 fvexi YV
16 14 15 xpex X×YV
17 16 a1i CVDVX×YV
18 13 17 estrreslem1 CVDVX×Y=BaseT
19 base0 =Base
20 fvprc ¬CVBaseC=
21 2 20 eqtrid ¬CVX=
22 fvprc ¬DVBaseD=
23 3 22 eqtrid ¬DVY=
24 21 23 orim12i ¬CV¬DVX=Y=
25 ianor ¬CVDV¬CV¬DV
26 xpeq0 X×Y=X=Y=
27 24 25 26 3imtr4i ¬CVDVX×Y=
28 fnxpc ×cFnV×V
29 fndm ×cFnV×Vdom×c=V×V
30 28 29 ax-mp dom×c=V×V
31 30 ndmov ¬CVDVC×cD=
32 1 31 eqtrid ¬CVDVT=
33 32 fveq2d ¬CVDVBaseT=Base
34 19 27 33 3eqtr4a ¬CVDVX×Y=BaseT
35 18 34 pm2.61i X×Y=BaseT