Metamath Proof Explorer


Theorem xpcco

Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccofval.t T=C×cD
xpccofval.b B=BaseT
xpccofval.k K=HomT
xpccofval.o1 ·˙=compC
xpccofval.o2 ˙=compD
xpccofval.o O=compT
xpcco.x φXB
xpcco.y φYB
xpcco.z φZB
xpcco.f φFXKY
xpcco.g φGYKZ
Assertion xpcco φGXYOZF=1stG1stX1stY·˙1stZ1stF2ndG2ndX2ndY˙2ndZ2ndF

Proof

Step Hyp Ref Expression
1 xpccofval.t T=C×cD
2 xpccofval.b B=BaseT
3 xpccofval.k K=HomT
4 xpccofval.o1 ·˙=compC
5 xpccofval.o2 ˙=compD
6 xpccofval.o O=compT
7 xpcco.x φXB
8 xpcco.y φYB
9 xpcco.z φZB
10 xpcco.f φFXKY
11 xpcco.g φGYKZ
12 1 2 3 4 5 6 xpccofval O=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
13 7 8 opelxpd φXYB×B
14 9 adantr φx=XYZB
15 ovex 2ndxKyV
16 fvex KxV
17 15 16 mpoex g2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfV
18 17 a1i φx=XYy=Zg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfV
19 11 adantr φx=XYy=ZGYKZ
20 simprl φx=XYy=Zx=XY
21 20 fveq2d φx=XYy=Z2ndx=2ndXY
22 op2ndg XBYB2ndXY=Y
23 7 8 22 syl2anc φ2ndXY=Y
24 23 adantr φx=XYy=Z2ndXY=Y
25 21 24 eqtrd φx=XYy=Z2ndx=Y
26 simprr φx=XYy=Zy=Z
27 25 26 oveq12d φx=XYy=Z2ndxKy=YKZ
28 19 27 eleqtrrd φx=XYy=ZG2ndxKy
29 10 adantr φx=XYy=ZFXKY
30 20 fveq2d φx=XYy=ZKx=KXY
31 df-ov XKY=KXY
32 30 31 eqtr4di φx=XYy=ZKx=XKY
33 29 32 eleqtrrd φx=XYy=ZFKx
34 33 adantr φx=XYy=Zg=GFKx
35 opex 1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfV
36 35 a1i φx=XYy=Zg=Gf=F1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfV
37 20 fveq2d φx=XYy=Z1stx=1stXY
38 op1stg XBYB1stXY=X
39 7 8 38 syl2anc φ1stXY=X
40 39 adantr φx=XYy=Z1stXY=X
41 37 40 eqtrd φx=XYy=Z1stx=X
42 41 adantr φx=XYy=Zg=Gf=F1stx=X
43 42 fveq2d φx=XYy=Zg=Gf=F1st1stx=1stX
44 25 adantr φx=XYy=Zg=Gf=F2ndx=Y
45 44 fveq2d φx=XYy=Zg=Gf=F1st2ndx=1stY
46 43 45 opeq12d φx=XYy=Zg=Gf=F1st1stx1st2ndx=1stX1stY
47 simplrr φx=XYy=Zg=Gf=Fy=Z
48 47 fveq2d φx=XYy=Zg=Gf=F1sty=1stZ
49 46 48 oveq12d φx=XYy=Zg=Gf=F1st1stx1st2ndx·˙1sty=1stX1stY·˙1stZ
50 simprl φx=XYy=Zg=Gf=Fg=G
51 50 fveq2d φx=XYy=Zg=Gf=F1stg=1stG
52 simprr φx=XYy=Zg=Gf=Ff=F
53 52 fveq2d φx=XYy=Zg=Gf=F1stf=1stF
54 49 51 53 oveq123d φx=XYy=Zg=Gf=F1stg1st1stx1st2ndx·˙1sty1stf=1stG1stX1stY·˙1stZ1stF
55 42 fveq2d φx=XYy=Zg=Gf=F2nd1stx=2ndX
56 44 fveq2d φx=XYy=Zg=Gf=F2nd2ndx=2ndY
57 55 56 opeq12d φx=XYy=Zg=Gf=F2nd1stx2nd2ndx=2ndX2ndY
58 47 fveq2d φx=XYy=Zg=Gf=F2ndy=2ndZ
59 57 58 oveq12d φx=XYy=Zg=Gf=F2nd1stx2nd2ndx˙2ndy=2ndX2ndY˙2ndZ
60 50 fveq2d φx=XYy=Zg=Gf=F2ndg=2ndG
61 52 fveq2d φx=XYy=Zg=Gf=F2ndf=2ndF
62 59 60 61 oveq123d φx=XYy=Zg=Gf=F2ndg2nd1stx2nd2ndx˙2ndy2ndf=2ndG2ndX2ndY˙2ndZ2ndF
63 54 62 opeq12d φx=XYy=Zg=Gf=F1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf=1stG1stX1stY·˙1stZ1stF2ndG2ndX2ndY˙2ndZ2ndF
64 28 34 36 63 ovmpodv2 φx=XYy=ZXYOZ=g2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfGXYOZF=1stG1stX1stY·˙1stZ1stF2ndG2ndX2ndY˙2ndZ2ndF
65 13 14 18 64 ovmpodv φO=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfGXYOZF=1stG1stX1stY·˙1stZ1stF2ndG2ndX2ndY˙2ndZ2ndF
66 12 65 mpi φGXYOZF=1stG1stX1stY·˙1stZ1stF2ndG2ndX2ndY˙2ndZ2ndF