Metamath Proof Explorer


Theorem xpcco2

Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpcco2.t T=C×cD
xpcco2.x X=BaseC
xpcco2.y Y=BaseD
xpcco2.h H=HomC
xpcco2.j J=HomD
xpcco2.m φMX
xpcco2.n φNY
xpcco2.p φPX
xpcco2.q φQY
xpcco2.o1 ·˙=compC
xpcco2.o2 ˙=compD
xpcco2.o O=compT
xpcco2.r φRX
xpcco2.s φSY
xpcco2.f φFMHP
xpcco2.g φGNJQ
xpcco2.k φKPHR
xpcco2.l φLQJS
Assertion xpcco2 φKLMNPQORSFG=KMP·˙RFLNQ˙SG

Proof

Step Hyp Ref Expression
1 xpcco2.t T=C×cD
2 xpcco2.x X=BaseC
3 xpcco2.y Y=BaseD
4 xpcco2.h H=HomC
5 xpcco2.j J=HomD
6 xpcco2.m φMX
7 xpcco2.n φNY
8 xpcco2.p φPX
9 xpcco2.q φQY
10 xpcco2.o1 ·˙=compC
11 xpcco2.o2 ˙=compD
12 xpcco2.o O=compT
13 xpcco2.r φRX
14 xpcco2.s φSY
15 xpcco2.f φFMHP
16 xpcco2.g φGNJQ
17 xpcco2.k φKPHR
18 xpcco2.l φLQJS
19 1 2 3 xpcbas X×Y=BaseT
20 eqid HomT=HomT
21 6 7 opelxpd φMNX×Y
22 8 9 opelxpd φPQX×Y
23 13 14 opelxpd φRSX×Y
24 15 16 opelxpd φFGMHP×NJQ
25 1 2 3 4 5 6 7 8 9 20 xpchom2 φMNHomTPQ=MHP×NJQ
26 24 25 eleqtrrd φFGMNHomTPQ
27 17 18 opelxpd φKLPHR×QJS
28 1 2 3 4 5 8 9 13 14 20 xpchom2 φPQHomTRS=PHR×QJS
29 27 28 eleqtrrd φKLPQHomTRS
30 1 19 20 10 11 12 21 22 23 26 29 xpcco φKLMNPQORSFG=1stKL1stMN1stPQ·˙1stRS1stFG2ndKL2ndMN2ndPQ˙2ndRS2ndFG
31 op1stg MXNY1stMN=M
32 6 7 31 syl2anc φ1stMN=M
33 op1stg PXQY1stPQ=P
34 8 9 33 syl2anc φ1stPQ=P
35 32 34 opeq12d φ1stMN1stPQ=MP
36 op1stg RXSY1stRS=R
37 13 14 36 syl2anc φ1stRS=R
38 35 37 oveq12d φ1stMN1stPQ·˙1stRS=MP·˙R
39 op1stg KPHRLQJS1stKL=K
40 17 18 39 syl2anc φ1stKL=K
41 op1stg FMHPGNJQ1stFG=F
42 15 16 41 syl2anc φ1stFG=F
43 38 40 42 oveq123d φ1stKL1stMN1stPQ·˙1stRS1stFG=KMP·˙RF
44 op2ndg MXNY2ndMN=N
45 6 7 44 syl2anc φ2ndMN=N
46 op2ndg PXQY2ndPQ=Q
47 8 9 46 syl2anc φ2ndPQ=Q
48 45 47 opeq12d φ2ndMN2ndPQ=NQ
49 op2ndg RXSY2ndRS=S
50 13 14 49 syl2anc φ2ndRS=S
51 48 50 oveq12d φ2ndMN2ndPQ˙2ndRS=NQ˙S
52 op2ndg KPHRLQJS2ndKL=L
53 17 18 52 syl2anc φ2ndKL=L
54 op2ndg FMHPGNJQ2ndFG=G
55 15 16 54 syl2anc φ2ndFG=G
56 51 53 55 oveq123d φ2ndKL2ndMN2ndPQ˙2ndRS2ndFG=LNQ˙SG
57 43 56 opeq12d φ1stKL1stMN1stPQ·˙1stRS1stFG2ndKL2ndMN2ndPQ˙2ndRS2ndFG=KMP·˙RFLNQ˙SG
58 30 57 eqtrd φKLMNPQORSFG=KMP·˙RFLNQ˙SG