Metamath Proof Explorer


Theorem xpchom2

Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpcco2.t T=C×cD
xpcco2.x X=BaseC
xpcco2.y Y=BaseD
xpcco2.h H=HomC
xpcco2.j J=HomD
xpcco2.m φMX
xpcco2.n φNY
xpcco2.p φPX
xpcco2.q φQY
xpchom2.k K=HomT
Assertion xpchom2 φMNKPQ=MHP×NJQ

Proof

Step Hyp Ref Expression
1 xpcco2.t T=C×cD
2 xpcco2.x X=BaseC
3 xpcco2.y Y=BaseD
4 xpcco2.h H=HomC
5 xpcco2.j J=HomD
6 xpcco2.m φMX
7 xpcco2.n φNY
8 xpcco2.p φPX
9 xpcco2.q φQY
10 xpchom2.k K=HomT
11 1 2 3 xpcbas X×Y=BaseT
12 6 7 opelxpd φMNX×Y
13 8 9 opelxpd φPQX×Y
14 1 11 4 5 10 12 13 xpchom φMNKPQ=1stMNH1stPQ×2ndMNJ2ndPQ
15 op1stg MXNY1stMN=M
16 6 7 15 syl2anc φ1stMN=M
17 op1stg PXQY1stPQ=P
18 8 9 17 syl2anc φ1stPQ=P
19 16 18 oveq12d φ1stMNH1stPQ=MHP
20 op2ndg MXNY2ndMN=N
21 6 7 20 syl2anc φ2ndMN=N
22 op2ndg PXQY2ndPQ=Q
23 8 9 22 syl2anc φ2ndPQ=Q
24 21 23 oveq12d φ2ndMNJ2ndPQ=NJQ
25 19 24 xpeq12d φ1stMNH1stPQ×2ndMNJ2ndPQ=MHP×NJQ
26 14 25 eqtrd φMNKPQ=MHP×NJQ