Metamath Proof Explorer


Theorem xpcval

Description: Value of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017)

Ref Expression
Hypotheses xpcval.t T=C×cD
xpcval.x X=BaseC
xpcval.y Y=BaseD
xpcval.h H=HomC
xpcval.j J=HomD
xpcval.o1 ·˙=compC
xpcval.o2 ˙=compD
xpcval.c φCV
xpcval.d φDW
xpcval.b φB=X×Y
xpcval.k φK=uB,vB1stuH1stv×2nduJ2ndv
xpcval.o φO=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
Assertion xpcval φT=BasendxBHomndxKcompndxO

Proof

Step Hyp Ref Expression
1 xpcval.t T=C×cD
2 xpcval.x X=BaseC
3 xpcval.y Y=BaseD
4 xpcval.h H=HomC
5 xpcval.j J=HomD
6 xpcval.o1 ·˙=compC
7 xpcval.o2 ˙=compD
8 xpcval.c φCV
9 xpcval.d φDW
10 xpcval.b φB=X×Y
11 xpcval.k φK=uB,vB1stuH1stv×2nduJ2ndv
12 xpcval.o φO=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
13 df-xpc ×c=rV,sVBaser×Bases/bub,vb1stuHomr1stv×2nduHoms2ndv/hBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
14 13 a1i φ×c=rV,sVBaser×Bases/bub,vb1stuHomr1stv×2nduHoms2ndv/hBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
15 fvex BaserV
16 fvex BasesV
17 15 16 xpex Baser×BasesV
18 17 a1i φr=Cs=DBaser×BasesV
19 simprl φr=Cs=Dr=C
20 19 fveq2d φr=Cs=DBaser=BaseC
21 20 2 eqtr4di φr=Cs=DBaser=X
22 simprr φr=Cs=Ds=D
23 22 fveq2d φr=Cs=DBases=BaseD
24 23 3 eqtr4di φr=Cs=DBases=Y
25 21 24 xpeq12d φr=Cs=DBaser×Bases=X×Y
26 10 adantr φr=Cs=DB=X×Y
27 25 26 eqtr4d φr=Cs=DBaser×Bases=B
28 vex bV
29 28 28 mpoex ub,vb1stuHomr1stv×2nduHoms2ndvV
30 29 a1i φr=Cs=Db=Bub,vb1stuHomr1stv×2nduHoms2ndvV
31 simpr φr=Cs=Db=Bb=B
32 simplrl φr=Cs=Db=Br=C
33 32 fveq2d φr=Cs=Db=BHomr=HomC
34 33 4 eqtr4di φr=Cs=Db=BHomr=H
35 34 oveqd φr=Cs=Db=B1stuHomr1stv=1stuH1stv
36 simplrr φr=Cs=Db=Bs=D
37 36 fveq2d φr=Cs=Db=BHoms=HomD
38 37 5 eqtr4di φr=Cs=Db=BHoms=J
39 38 oveqd φr=Cs=Db=B2nduHoms2ndv=2nduJ2ndv
40 35 39 xpeq12d φr=Cs=Db=B1stuHomr1stv×2nduHoms2ndv=1stuH1stv×2nduJ2ndv
41 31 31 40 mpoeq123dv φr=Cs=Db=Bub,vb1stuHomr1stv×2nduHoms2ndv=uB,vB1stuH1stv×2nduJ2ndv
42 11 ad2antrr φr=Cs=Db=BK=uB,vB1stuH1stv×2nduJ2ndv
43 41 42 eqtr4d φr=Cs=Db=Bub,vb1stuHomr1stv×2nduHoms2ndv=K
44 simplr φr=Cs=Db=Bh=Kb=B
45 44 opeq2d φr=Cs=Db=Bh=KBasendxb=BasendxB
46 simpr φr=Cs=Db=Bh=Kh=K
47 46 opeq2d φr=Cs=Db=Bh=KHomndxh=HomndxK
48 44 44 xpeq12d φr=Cs=Db=Bh=Kb×b=B×B
49 46 oveqd φr=Cs=Db=Bh=K2ndxhy=2ndxKy
50 46 fveq1d φr=Cs=Db=Bh=Khx=Kx
51 32 adantr φr=Cs=Db=Bh=Kr=C
52 51 fveq2d φr=Cs=Db=Bh=Kcompr=compC
53 52 6 eqtr4di φr=Cs=Db=Bh=Kcompr=·˙
54 53 oveqd φr=Cs=Db=Bh=K1st1stx1st2ndxcompr1sty=1st1stx1st2ndx·˙1sty
55 54 oveqd φr=Cs=Db=Bh=K1stg1st1stx1st2ndxcompr1sty1stf=1stg1st1stx1st2ndx·˙1sty1stf
56 36 adantr φr=Cs=Db=Bh=Ks=D
57 56 fveq2d φr=Cs=Db=Bh=Kcomps=compD
58 57 7 eqtr4di φr=Cs=Db=Bh=Kcomps=˙
59 58 oveqd φr=Cs=Db=Bh=K2nd1stx2nd2ndxcomps2ndy=2nd1stx2nd2ndx˙2ndy
60 59 oveqd φr=Cs=Db=Bh=K2ndg2nd1stx2nd2ndxcomps2ndy2ndf=2ndg2nd1stx2nd2ndx˙2ndy2ndf
61 55 60 opeq12d φr=Cs=Db=Bh=K1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf=1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
62 49 50 61 mpoeq123dv φr=Cs=Db=Bh=Kg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf=g2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
63 48 44 62 mpoeq123dv φr=Cs=Db=Bh=Kxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
64 12 ad3antrrr φr=Cs=Db=Bh=KO=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
65 63 64 eqtr4d φr=Cs=Db=Bh=Kxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf=O
66 65 opeq2d φr=Cs=Db=Bh=Kcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf=compndxO
67 45 47 66 tpeq123d φr=Cs=Db=Bh=KBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf=BasendxBHomndxKcompndxO
68 30 43 67 csbied2 φr=Cs=Db=Bub,vb1stuHomr1stv×2nduHoms2ndv/hBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf=BasendxBHomndxKcompndxO
69 18 27 68 csbied2 φr=Cs=DBaser×Bases/bub,vb1stuHomr1stv×2nduHoms2ndv/hBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf=BasendxBHomndxKcompndxO
70 8 elexd φCV
71 9 elexd φDV
72 tpex BasendxBHomndxKcompndxOV
73 72 a1i φBasendxBHomndxKcompndxOV
74 14 69 70 71 73 ovmpod φC×cD=BasendxBHomndxKcompndxO
75 1 74 eqtrid φT=BasendxBHomndxKcompndxO