Metamath Proof Explorer


Theorem xpdjuen

Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of Enderton p. 142. (Contributed by NM, 26-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xpdjuen AVBWCXA×B⊔︀CA×B⊔︀A×C

Proof

Step Hyp Ref Expression
1 enrefg AVAA
2 1 3ad2ant1 AVBWCXAA
3 0ex V
4 simp2 AVBWCXBW
5 xpsnen2g VBW×BB
6 3 4 5 sylancr AVBWCX×BB
7 6 ensymd AVBWCXB×B
8 xpen AAB×BA×BA××B
9 2 7 8 syl2anc AVBWCXA×BA××B
10 1on 1𝑜On
11 simp3 AVBWCXCX
12 xpsnen2g 1𝑜OnCX1𝑜×CC
13 10 11 12 sylancr AVBWCX1𝑜×CC
14 13 ensymd AVBWCXC1𝑜×C
15 xpen AAC1𝑜×CA×CA×1𝑜×C
16 2 14 15 syl2anc AVBWCXA×CA×1𝑜×C
17 xp01disjl ×B1𝑜×C=
18 17 xpeq2i A××B1𝑜×C=A×
19 xpindi A××B1𝑜×C=A××BA×1𝑜×C
20 xp0 A×=
21 18 19 20 3eqtr3i A××BA×1𝑜×C=
22 21 a1i AVBWCXA××BA×1𝑜×C=
23 djuenun A×BA××BA×CA×1𝑜×CA××BA×1𝑜×C=A×B⊔︀A×CA××BA×1𝑜×C
24 9 16 22 23 syl3anc AVBWCXA×B⊔︀A×CA××BA×1𝑜×C
25 df-dju B⊔︀C=×B1𝑜×C
26 25 xpeq2i A×B⊔︀C=A××B1𝑜×C
27 xpundi A××B1𝑜×C=A××BA×1𝑜×C
28 26 27 eqtri A×B⊔︀C=A××BA×1𝑜×C
29 24 28 breqtrrdi AVBWCXA×B⊔︀A×CA×B⊔︀C
30 29 ensymd AVBWCXA×B⊔︀CA×B⊔︀A×C