Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
xpeq1
Next ⟩
xpss12
Metamath Proof Explorer
Ascii
Unicode
Theorem
xpeq1
Description:
Equality theorem for Cartesian product.
(Contributed by
NM
, 4-Jul-1994)
Ref
Expression
Assertion
xpeq1
⊢
A
=
B
→
A
×
C
=
B
×
C
Proof
Step
Hyp
Ref
Expression
1
eleq2
⊢
A
=
B
→
x
∈
A
↔
x
∈
B
2
1
anbi1d
⊢
A
=
B
→
x
∈
A
∧
y
∈
C
↔
x
∈
B
∧
y
∈
C
3
2
opabbidv
⊢
A
=
B
→
x
y
|
x
∈
A
∧
y
∈
C
=
x
y
|
x
∈
B
∧
y
∈
C
4
df-xp
⊢
A
×
C
=
x
y
|
x
∈
A
∧
y
∈
C
5
df-xp
⊢
B
×
C
=
x
y
|
x
∈
B
∧
y
∈
C
6
3
4
5
3eqtr4g
⊢
A
=
B
→
A
×
C
=
B
×
C