Metamath Proof Explorer


Theorem xpexr2

Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion xpexr2 A×BCA×BAVBV

Proof

Step Hyp Ref Expression
1 xpnz ABA×B
2 dmxp BdomA×B=A
3 2 adantl A×BCBdomA×B=A
4 dmexg A×BCdomA×BV
5 4 adantr A×BCBdomA×BV
6 3 5 eqeltrrd A×BCBAV
7 rnxp AranA×B=B
8 7 adantl A×BCAranA×B=B
9 rnexg A×BCranA×BV
10 9 adantr A×BCAranA×BV
11 8 10 eqeltrrd A×BCABV
12 6 11 anim12dan A×BCBAAVBV
13 12 ancom2s A×BCABAVBV
14 1 13 sylan2br A×BCA×BAVBV