Metamath Proof Explorer


Theorem xpfir

Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009) (Proof shortened by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xpfir A×BFinA×BAFinBFin

Proof

Step Hyp Ref Expression
1 xpexr2 A×BFinA×BAVBV
2 1 simpld A×BFinA×BAV
3 1 simprd A×BFinA×BBV
4 simpr A×BFinA×BA×B
5 xpnz ABA×B
6 4 5 sylibr A×BFinA×BAB
7 6 simprd A×BFinA×BB
8 xpdom3 AVBVBAA×B
9 2 3 7 8 syl3anc A×BFinA×BAA×B
10 domfi A×BFinAA×BAFin
11 9 10 syldan A×BFinA×BAFin
12 6 simpld A×BFinA×BA
13 xpdom3 BVAVABB×A
14 3 2 12 13 syl3anc A×BFinA×BBB×A
15 xpcomeng BVAVB×AA×B
16 3 2 15 syl2anc A×BFinA×BB×AA×B
17 domentr BB×AB×AA×BBA×B
18 14 16 17 syl2anc A×BFinA×BBA×B
19 domfi A×BFinBA×BBFin
20 18 19 syldan A×BFinA×BBFin
21 11 20 jca A×BFinA×BAFinBFin