Metamath Proof Explorer


Theorem xpsfrnel2

Description: Elementhood in the target space of the function F appearing in xpsval . (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Assertion xpsfrnel2 X1𝑜Yk2𝑜ifk=ABXAYB

Proof

Step Hyp Ref Expression
1 xpsfrnel X1𝑜Yk2𝑜ifk=ABX1𝑜YFn2𝑜X1𝑜YAX1𝑜Y1𝑜B
2 fnpr2ob XVYVX1𝑜YFn2𝑜
3 2 biimpri X1𝑜YFn2𝑜XVYV
4 3 3ad2ant1 X1𝑜YFn2𝑜X1𝑜YAX1𝑜Y1𝑜BXVYV
5 elex XAXV
6 elex YBYV
7 5 6 anim12i XAYBXVYV
8 3anass X1𝑜YFn2𝑜X1𝑜YAX1𝑜Y1𝑜BX1𝑜YFn2𝑜X1𝑜YAX1𝑜Y1𝑜B
9 fnpr2o XVYVX1𝑜YFn2𝑜
10 9 biantrurd XVYVX1𝑜YAX1𝑜Y1𝑜BX1𝑜YFn2𝑜X1𝑜YAX1𝑜Y1𝑜B
11 fvpr0o XVX1𝑜Y=X
12 11 eleq1d XVX1𝑜YAXA
13 fvpr1o YVX1𝑜Y1𝑜=Y
14 13 eleq1d YVX1𝑜Y1𝑜BYB
15 12 14 bi2anan9 XVYVX1𝑜YAX1𝑜Y1𝑜BXAYB
16 10 15 bitr3d XVYVX1𝑜YFn2𝑜X1𝑜YAX1𝑜Y1𝑜BXAYB
17 8 16 bitrid XVYVX1𝑜YFn2𝑜X1𝑜YAX1𝑜Y1𝑜BXAYB
18 4 7 17 pm5.21nii X1𝑜YFn2𝑜X1𝑜YAX1𝑜Y1𝑜BXAYB
19 1 18 bitri X1𝑜Yk2𝑜ifk=ABXAYB