Metamath Proof Explorer


Theorem xpsgrp

Description: The binary product of groups is a group. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis xpsgrp.t T=R×𝑠S
Assertion xpsgrp RGrpSGrpTGrp

Proof

Step Hyp Ref Expression
1 xpsgrp.t T=R×𝑠S
2 eqid BaseR=BaseR
3 eqid BaseS=BaseS
4 simpl RGrpSGrpRGrp
5 simpr RGrpSGrpSGrp
6 eqid xBaseR,yBaseSx1𝑜y=xBaseR,yBaseSx1𝑜y
7 eqid ScalarR=ScalarR
8 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
9 1 2 3 4 5 6 7 8 xpsval RGrpSGrpT=xBaseR,yBaseSx1𝑜y-1𝑠ScalarR𝑠R1𝑜S
10 6 xpsff1o2 xBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoranxBaseR,yBaseSx1𝑜y
11 1 2 3 4 5 6 7 8 xpsrnbas RGrpSGrpranxBaseR,yBaseSx1𝑜y=BaseScalarR𝑠R1𝑜S
12 11 f1oeq3d RGrpSGrpxBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoranxBaseR,yBaseSx1𝑜yxBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoBaseScalarR𝑠R1𝑜S
13 10 12 mpbii RGrpSGrpxBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoBaseScalarR𝑠R1𝑜S
14 f1ocnv xBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoBaseScalarR𝑠R1𝑜SxBaseR,yBaseSx1𝑜y-1:BaseScalarR𝑠R1𝑜S1-1 ontoBaseR×BaseS
15 f1of1 xBaseR,yBaseSx1𝑜y-1:BaseScalarR𝑠R1𝑜S1-1 ontoBaseR×BaseSxBaseR,yBaseSx1𝑜y-1:BaseScalarR𝑠R1𝑜S1-1BaseR×BaseS
16 13 14 15 3syl RGrpSGrpxBaseR,yBaseSx1𝑜y-1:BaseScalarR𝑠R1𝑜S1-1BaseR×BaseS
17 2on 2𝑜On
18 17 a1i RGrpSGrp2𝑜On
19 fvexd RGrpSGrpScalarRV
20 xpscf R1𝑜S:2𝑜GrpRGrpSGrp
21 20 biimpri RGrpSGrpR1𝑜S:2𝑜Grp
22 8 18 19 21 prdsgrpd RGrpSGrpScalarR𝑠R1𝑜SGrp
23 eqid xBaseR,yBaseSx1𝑜y-1𝑠ScalarR𝑠R1𝑜S=xBaseR,yBaseSx1𝑜y-1𝑠ScalarR𝑠R1𝑜S
24 eqid BaseScalarR𝑠R1𝑜S=BaseScalarR𝑠R1𝑜S
25 23 24 imasgrpf1 xBaseR,yBaseSx1𝑜y-1:BaseScalarR𝑠R1𝑜S1-1BaseR×BaseSScalarR𝑠R1𝑜SGrpxBaseR,yBaseSx1𝑜y-1𝑠ScalarR𝑠R1𝑜SGrp
26 16 22 25 syl2anc RGrpSGrpxBaseR,yBaseSx1𝑜y-1𝑠ScalarR𝑠R1𝑜SGrp
27 9 26 eqeltrd RGrpSGrpTGrp