Metamath Proof Explorer


Theorem xpsmnd

Description: The binary product of monoids is a monoid. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis xpsmnd.t T = R × 𝑠 S
Assertion xpsmnd R Mnd S Mnd T Mnd

Proof

Step Hyp Ref Expression
1 xpsmnd.t T = R × 𝑠 S
2 eqid Base R = Base R
3 eqid Base S = Base S
4 simpl R Mnd S Mnd R Mnd
5 simpr R Mnd S Mnd S Mnd
6 eqid x Base R , y Base S x 1 𝑜 y = x Base R , y Base S x 1 𝑜 y
7 eqid Scalar R = Scalar R
8 eqid Scalar R 𝑠 R 1 𝑜 S = Scalar R 𝑠 R 1 𝑜 S
9 1 2 3 4 5 6 7 8 xpsval R Mnd S Mnd T = x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S
10 6 xpsff1o2 x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y
11 1 2 3 4 5 6 7 8 xpsrnbas R Mnd S Mnd ran x Base R , y Base S x 1 𝑜 y = Base Scalar R 𝑠 R 1 𝑜 S
12 11 f1oeq3d R Mnd S Mnd x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto Base Scalar R 𝑠 R 1 𝑜 S
13 10 12 mpbii R Mnd S Mnd x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto Base Scalar R 𝑠 R 1 𝑜 S
14 f1ocnv x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto Base Scalar R 𝑠 R 1 𝑜 S x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 onto Base R × Base S
15 f1of1 x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 onto Base R × Base S x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 Base R × Base S
16 13 14 15 3syl R Mnd S Mnd x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 Base R × Base S
17 2on 2 𝑜 On
18 17 a1i R Mnd S Mnd 2 𝑜 On
19 fvexd R Mnd S Mnd Scalar R V
20 xpscf R 1 𝑜 S : 2 𝑜 Mnd R Mnd S Mnd
21 20 biimpri R Mnd S Mnd R 1 𝑜 S : 2 𝑜 Mnd
22 8 18 19 21 prdsmndd R Mnd S Mnd Scalar R 𝑠 R 1 𝑜 S Mnd
23 eqid x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S = x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S
24 eqid Base Scalar R 𝑠 R 1 𝑜 S = Base Scalar R 𝑠 R 1 𝑜 S
25 23 24 imasmndf1 x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 Base R × Base S Scalar R 𝑠 R 1 𝑜 S Mnd x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S Mnd
26 16 22 25 syl2anc R Mnd S Mnd x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S Mnd
27 9 26 eqeltrd R Mnd S Mnd T Mnd