Metamath Proof Explorer


Theorem xrge0tsmseq

Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 24-Mar-2017)

Ref Expression
Hypotheses xrge0tsmseq.g G=𝑠*𝑠0+∞
xrge0tsmseq.a φAV
xrge0tsmseq.f φF:A0+∞
xrge0tsmseq.h φCGtsumsF
Assertion xrge0tsmseq φC=GtsumsF

Proof

Step Hyp Ref Expression
1 xrge0tsmseq.g G=𝑠*𝑠0+∞
2 xrge0tsmseq.a φAV
3 xrge0tsmseq.f φF:A0+∞
4 xrge0tsmseq.h φCGtsumsF
5 1 xrge0tsms2 AVF:A0+∞GtsumsF1𝑜
6 2 3 5 syl2anc φGtsumsF1𝑜
7 en1eqsn CGtsumsFGtsumsF1𝑜GtsumsF=C
8 4 6 7 syl2anc φGtsumsF=C
9 8 unieqd φGtsumsF=C
10 unisng CGtsumsFC=C
11 4 10 syl φC=C
12 9 11 eqtr2d φC=GtsumsF