Metamath Proof Explorer


Theorem xrnarchi

Description: The completed real line is not Archimedean. (Contributed by Thierry Arnoux, 1-Feb-2018)

Ref Expression
Assertion xrnarchi ¬𝑠*Archi

Proof

Step Hyp Ref Expression
1 1xr 1*
2 pnfxr +∞*
3 1rp 1+
4 pnfinf 1+1𝑠*+∞
5 3 4 ax-mp 1𝑠*+∞
6 breq1 x=1x𝑠*y1𝑠*y
7 breq2 y=+∞1𝑠*y1𝑠*+∞
8 6 7 rspc2ev 1*+∞*1𝑠*+∞x*y*x𝑠*y
9 1 2 5 8 mp3an x*y*x𝑠*y
10 rexnal x*¬y*¬x𝑠*y¬x*y*¬x𝑠*y
11 dfrex2 y*x𝑠*y¬y*¬x𝑠*y
12 11 rexbii x*y*x𝑠*yx*¬y*¬x𝑠*y
13 xrsex 𝑠*V
14 xrsbas *=Base𝑠*
15 xrs0 0=0𝑠*
16 eqid 𝑠*=𝑠*
17 14 15 16 isarchi 𝑠*V𝑠*Archix*y*¬x𝑠*y
18 13 17 ax-mp 𝑠*Archix*y*¬x𝑠*y
19 18 notbii ¬𝑠*Archi¬x*y*¬x𝑠*y
20 10 12 19 3bitr4i x*y*x𝑠*y¬𝑠*Archi
21 9 20 mpbi ¬𝑠*Archi