Metamath Proof Explorer


Theorem xrpxdivcld

Description: Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Hypotheses xrpxdivcld.1 φ A 0 +∞
xrpxdivcld.2 φ B +
Assertion xrpxdivcld φ A ÷ 𝑒 B 0 +∞

Proof

Step Hyp Ref Expression
1 xrpxdivcld.1 φ A 0 +∞
2 xrpxdivcld.2 φ B +
3 oveq1 A = 0 A ÷ 𝑒 B = 0 ÷ 𝑒 B
4 xdiv0rp B + 0 ÷ 𝑒 B = 0
5 2 4 syl φ 0 ÷ 𝑒 B = 0
6 3 5 sylan9eqr φ A = 0 A ÷ 𝑒 B = 0
7 elxrge02 A ÷ 𝑒 B 0 +∞ A ÷ 𝑒 B = 0 A ÷ 𝑒 B + A ÷ 𝑒 B = +∞
8 7 biimpri A ÷ 𝑒 B = 0 A ÷ 𝑒 B + A ÷ 𝑒 B = +∞ A ÷ 𝑒 B 0 +∞
9 8 3o1cs A ÷ 𝑒 B = 0 A ÷ 𝑒 B 0 +∞
10 6 9 syl φ A = 0 A ÷ 𝑒 B 0 +∞
11 simpr φ A + A +
12 2 adantr φ A + B +
13 11 12 rpxdivcld φ A + A ÷ 𝑒 B +
14 8 3o2cs A ÷ 𝑒 B + A ÷ 𝑒 B 0 +∞
15 13 14 syl φ A + A ÷ 𝑒 B 0 +∞
16 oveq1 A = +∞ A ÷ 𝑒 B = +∞ ÷ 𝑒 B
17 xdivpnfrp B + +∞ ÷ 𝑒 B = +∞
18 2 17 syl φ +∞ ÷ 𝑒 B = +∞
19 16 18 sylan9eqr φ A = +∞ A ÷ 𝑒 B = +∞
20 8 3o3cs A ÷ 𝑒 B = +∞ A ÷ 𝑒 B 0 +∞
21 19 20 syl φ A = +∞ A ÷ 𝑒 B 0 +∞
22 elxrge02 A 0 +∞ A = 0 A + A = +∞
23 1 22 sylib φ A = 0 A + A = +∞
24 10 15 21 23 mpjao3dan φ A ÷ 𝑒 B 0 +∞