Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | xrre3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt | |
|
2 | 1 | adantl | |
3 | mnfxr | |
|
4 | rexr | |
|
5 | 4 | adantl | |
6 | simpl | |
|
7 | xrltletr | |
|
8 | 3 5 6 7 | mp3an2i | |
9 | 2 8 | mpand | |
10 | 9 | imp | |
11 | 10 | adantrr | |
12 | simprr | |
|
13 | xrrebnd | |
|
14 | 13 | ad2antrr | |
15 | 11 12 14 | mpbir2and | |