Metamath Proof Explorer


Theorem xrre3

Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014)

Ref Expression
Assertion xrre3 A*BBAA<+∞A

Proof

Step Hyp Ref Expression
1 mnflt B−∞<B
2 1 adantl A*B−∞<B
3 mnfxr −∞*
4 rexr BB*
5 4 adantl A*BB*
6 simpl A*BA*
7 xrltletr −∞*B*A*−∞<BBA−∞<A
8 3 5 6 7 mp3an2i A*B−∞<BBA−∞<A
9 2 8 mpand A*BBA−∞<A
10 9 imp A*BBA−∞<A
11 10 adantrr A*BBAA<+∞−∞<A
12 simprr A*BBAA<+∞A<+∞
13 xrrebnd A*A−∞<AA<+∞
14 13 ad2antrr A*BBAA<+∞A−∞<AA<+∞
15 11 12 14 mpbir2and A*BBAA<+∞A